数学建模回归分析.ppt
《数学建模回归分析.ppt》由会员分享,可在线阅读,更多相关《数学建模回归分析.ppt(32页珍藏版)》请在优知文库上搜索。
1、回归分析回归分析引言引言 回归分析是处理很难用一种精确方法表示出回归分析是处理很难用一种精确方法表示出来的变量之间关系的一种数学方法,它是最常用来的变量之间关系的一种数学方法,它是最常用的数理统计方法,能解决预测、控制、生产工艺的数理统计方法,能解决预测、控制、生产工艺优化等问题。它在工农业生产和科学研究各个领优化等问题。它在工农业生产和科学研究各个领域中均有广泛的应用。域中均有广泛的应用。 回归分析一般分为线性回归分析和非线性回回归分析一般分为线性回归分析和非线性回归分析。本节着重介绍线性回归分析的基本结论归分析。本节着重介绍线性回归分析的基本结论及其在及其在MatlabMatlab中的相应
2、命令。线性回归分析是两中的相应命令。线性回归分析是两类回归分析中较简单的一类,也是应用较多的一类回归分析中较简单的一类,也是应用较多的一类。类。一一 一元线性回归分析一元线性回归分析 针对一组(二维)数据针对一组(二维)数据 (其中(其中 互不相同),其最简单的数据拟合形式为互不相同),其最简单的数据拟合形式为寻求直线寻求直线 ,使,使 在最小二乘在最小二乘准则下与所有数据点最为接近。准则下与所有数据点最为接近。 但由于随机观测误差的存在,满足上述数据点但由于随机观测误差的存在,满足上述数据点的直线应该是的直线应该是 (1.1)(1.1) 其中其中x x, , y y是准确的是准确的, , 是
3、两个未知参数,是两个未知参数, 是均是均值为零的随机观测误差,具有不可观测性,值为零的随机观测误差,具有不可观测性, 可以合理地假设这种观测误差服从正态分布可以合理地假设这种观测误差服从正态分布。ix 于是我们得到一元线性回归模型为于是我们得到一元线性回归模型为 (1.2)(1.2) 其中其中 未知,固定的未知参数未知,固定的未知参数 称为称为回归回归系数系数,自变量,自变量x x称为称为回归变量回归变量。 (1.1)(1.1)式两边同时取期望得:式两边同时取期望得: 称为称为y y 对对x x的回归直线方程。的回归直线方程。 在该模型下,第在该模型下,第i i个观测值可个观测值可以看作样本(
4、这些样本相互独立但不同分布以看作样本(这些样本相互独立但不同分布, ,i i = 1,2,= 1,2, ,n n)的实际抽样值,即样本值。)的实际抽样值,即样本值。 一元线性回归分析的一元线性回归分析的主要任务主要任务是:是:a.a.用实验值(样本值)对用实验值(样本值)对 作点估计;作点估计;b.b.对回归系数对回归系数 作假设检验;作假设检验;c.c.在在 处对处对y y 作预测,并对作预测,并对y y作区间估计。作区间估计。1 1、 回归参数回归参数 估计估计 假设有假设有n n组独立观测值:组独立观测值: 则则由由(1.2)(1.2)有有 (1.31.3) 其中其中 相互独立。记相互独
5、立。记 称称 为偏离真实直线的偏差平方和。由最为偏离真实直线的偏差平方和。由最小二乘法得到的估计小二乘法得到的估计 称为称为 的最小二的最小二乘估计,其中乘估计,其中 (经验)回归方程为(经验)回归方程为 (1.4) 这样我们得到这样我们得到 的无偏估计的无偏估计 ,其中其中 服从正态分布服从正态分布2 模型的假设、预测、控制模型的假设、预测、控制1 1、回归方程的显著性检验回归方程的显著性检验 在实际问题中,因变量在实际问题中,因变量y y 与自变量与自变量x x之间是否之间是否有线性关系有线性关系(1.1)(1.1)只是一种假设,在求出回归方程只是一种假设,在求出回归方程之后,还必须对这种
6、回归方程同实际观测数据拟之后,还必须对这种回归方程同实际观测数据拟合的效果进行检验。合的效果进行检验。 由由(1.1)(1.1)可知,可知, 越大,越大,y y 随随x x变化的趋势就变化的趋势就 越明显;反之,越明显;反之, 越小,越小,y y 随随x x变化的趋势就越不变化的趋势就越不明显。特别当明显。特别当 =0=0时,则认为时,则认为y y 与与x x之间不存在线之间不存在线性关系,当性关系,当 时,则认为时,则认为y y与与x x之间有线性关系。之间有线性关系。因此,问题归结为对假设因此,问题归结为对假设 进行检验。进行检验。11110 假设假设: : 被拒绝,则回归显著,认为被拒绝
7、,则回归显著,认为y y 与与x x之间存在线性关系,所求的线性回归方程有意之间存在线性关系,所求的线性回归方程有意义;否则回归不显著,义;否则回归不显著,y y与与x x的关系不能用一元线的关系不能用一元线性回归模型来描述,所得的回归方程也无意义。性回归模型来描述,所得的回归方程也无意义。此时,可能有如下几种情况:此时,可能有如下几种情况:(1 1)x x对对y y没有显著影响没有显著影响,此时应丢掉变量,此时应丢掉变量x x;(2 2)x x对对y y 有显著影响有显著影响,但这种影响不能用线性关,但这种影响不能用线性关 系来表示,应该用非线性回归;系来表示,应该用非线性回归;(3 3)除
8、除x x之外,还有其他不可忽略的变量对之外,还有其他不可忽略的变量对y y 有显有显 著影响,著影响,从而削弱了从而削弱了x x对对y y 的影响。此时应用的影响。此时应用 多元线性回归模型多元线性回归模型。因此,在接受。因此,在接受H0 H0 的同的同 时,需要进一步查明原因以便分别处理。时,需要进一步查明原因以便分别处理。检验方法:(检验方法:(a a)F F检验法检验法 对样本方差对样本方差 进行分解,有进行分解,有 上式中的上式中的 是由实际观测值没有落在回归直线上是由实际观测值没有落在回归直线上引起的(否则为零),引起的(否则为零),U U 是由回归直线引起的。因是由回归直线引起的。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 回归 分析