大学物理高斯定理.ppt
《大学物理高斯定理.ppt》由会员分享,可在线阅读,更多相关《大学物理高斯定理.ppt(29页珍藏版)》请在优知文库上搜索。
1、大学物理学电子教案大学物理学电子教案静电场的性质与计算静电场的性质与计算6-3 6-3 电场线电场线 高斯定理高斯定理 电场线上任一点的切线方向给出了该点电场电场线上任一点的切线方向给出了该点电场强度的方向;强度的方向; 某点处某点处电场线密度电场线密度与该点电场强度的大小与该点电场强度的大小相等。相等。 1、定义定义 在电场中画一组带箭头的曲线在电场中画一组带箭头的曲线,这些曲线与电场强度这些曲线与电场强度 之间具有之间具有以下关系以下关系: EE 6-3 电场线电场线 高斯定理高斯定理一、电场线一、电场线电场线密度电场线密度:经过电场中任一点,作一面积元经过电场中任一点,作一面积元dS,并
2、,并使它与该点的场强垂直,若通过使它与该点的场强垂直,若通过dS面的电场线条数面的电场线条数为为dN,则电场线密度,则电场线密度SNEdd可见可见,电场线密集处电场强度大电场线密集处电场强度大,电场线稀疏处电电场线稀疏处电场强度小场强度小 2、几种典型的电场线分布、几种典型的电场线分布+正点电荷正点电荷负点电荷负点电荷+等量异号点电荷等量异号点电荷带电平行板电容器的电场带电平行板电容器的电场+不等量异号点电荷的电场线不等量异号点电荷的电场线 2q+q3、电场线的性质、电场线的性质电场线总是起始于正电荷(或来自于无穷远),电场线总是起始于正电荷(或来自于无穷远),终止于负电荷(或终止于无穷远);
3、终止于负电荷(或终止于无穷远);任何两条电场线都不能相交;任何两条电场线都不能相交;非闭合曲线。非闭合曲线。4、关于电场线的几点说明、关于电场线的几点说明电场线是人为画出的,在实际电场中并不存在;电场线是人为画出的,在实际电场中并不存在;电场线可以形象地、直观地表现电场的总体情况电场线可以形象地、直观地表现电场的总体情况; ;电场线图形可以用实验演示出来。电场线图形可以用实验演示出来。1、定义、定义 在电场中穿过任意曲面的电场线的总条数称为穿过在电场中穿过任意曲面的电场线的总条数称为穿过该面的电通量,用该面的电通量,用 表示。表示。 (1)匀强电场中的电通量匀强电场中的电通量E与平面与平面S垂
4、直时垂直时ESe E与平面与平面S 有夹角有夹角时时 cosESe 引入引入面积矢量面积矢量SSneE SeSSn E二、电场强度通量二、电场强度通量(2)非均匀电场的电通量非均匀电场的电通量SdEde 将曲面分割为无限多个面元将曲面分割为无限多个面元 , ,由于面元很小,由于面元很小,所以每一个面元上场强可以认为是均匀电场所以每一个面元上场强可以认为是均匀电场 ,d S面元面元dSSndSEeSE dS 2、电通量的正负、电通量的正负闭合曲面闭合曲面: :规定规定取取外法线方向外法线方向( (自内向外自内向外) ) 为正。因此有为正。因此有: :nEnn非闭合曲面非闭合曲面: : 电通量的结
5、果可正可负,完全取决电通量的结果可正可负,完全取决于面元于面元 与与 间的夹角间的夹角 : :dSE,0 ,0 22ee 时时电场线电场线由内向外由内向外穿出穿出: 电场线电场线由外向内由外向内穿入穿入:0,e 为正正 0,e 为负整个闭合曲面的电通量为整个闭合曲面的电通量为 =deS ES1、内容、内容S01eiSE dSq ( 内)2、静电场高斯定理的验证静电场高斯定理的验证 静电场中通过一个任意闭合曲面的电通量值等于该静电场中通过一个任意闭合曲面的电通量值等于该曲面所包围的所有电荷电量的代数和曲面所包围的所有电荷电量的代数和 除以除以 0 ,与闭曲面外的电荷无关与闭曲面外的电荷无关 iq
6、数学表达式数学表达式: : 包围点电荷的同心球面包围点电荷的同心球面S的电通量都等于的电通量都等于 0q 包围点电荷的包围点电荷的任意闭合曲面任意闭合曲面S的电通量都等于的电通量都等于 0q 高斯简介高斯简介三、高斯定理(三、高斯定理(Gauss 定理)定理)对于包围点电荷对于包围点电荷q的任意封闭曲面的任意封闭曲面 qSS 电场线电场线+qrS SS S可在外或内作一以点电荷为中可在外或内作一以点电荷为中心的同心球面心的同心球面 ,使使 内只有点内只有点电荷,如图所示。电荷,如图所示。SS 由电场线的连续性可知,由电场线的连续性可知,穿过穿过 S的电场线都穿过同心球的电场线都穿过同心球面面
7、,故两者的电通量相等,故两者的电通量相等,均为均为 。S0q 结论说明,单个点电荷包围结论说明,单个点电荷包围在任意闭合曲面内时,穿过在任意闭合曲面内时,穿过该闭曲面的电通量与该点电该闭曲面的电通量与该点电荷在闭曲面内的位置无关。荷在闭曲面内的位置无关。 由于由于电场线的连续性电场线的连续性可知,穿可知,穿入与穿出任一闭合曲面的电通入与穿出任一闭合曲面的电通量应该相等。所以当闭合曲面量应该相等。所以当闭合曲面无电荷时,电通量为零。无电荷时,电通量为零。不包围点电荷不包围点电荷q的任意闭合曲面的任意闭合曲面S的电通量恒为零的电通量恒为零 点电荷系的电通量等于在高斯点电荷系的电通量等于在高斯面内的
8、点电荷单独存在时电通量面内的点电荷单独存在时电通量的代数和。的代数和。 利用利用场强叠加原理场强叠加原理S q1kqkq2q1q2kqnq设闭合曲面设闭合曲面S S包围多个电荷包围多个电荷q1-qk,同时面外也有多个电荷同时面外也有多个电荷qk+1-qn1niiE =E通过闭合曲面通过闭合曲面S的电通量为的电通量为 1=ddneiSSiESES根据,不包围在闭合曲面内的点电荷对闭合曲根据,不包围在闭合曲面内的点电荷对闭合曲面的电通量恒为面的电通量恒为0,所以,所以011dieiSkkiiqES0edqE dS 当把上述点电荷换成连续带电体时当把上述点电荷换成连续带电体时 3、关于、关于Gaus
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学物理 定理