概率论与数理统计(第2版)教案.docx
《概率论与数理统计(第2版)教案.docx》由会员分享,可在线阅读,更多相关《概率论与数理统计(第2版)教案.docx(20页珍藏版)》请在优知文库上搜索。
1、概率论与数理统计教学教案第一章随机事件与概率授课序号O1.教学基本指标教学课地第一章第一节随机事件及其运算课的类型新知识课教学方法讲授、课堂提问、讨论、启发、自学教学手段黑板多媒体结合教学重点的机事件的定义、随机事件的运算与关系教学难点随机事件的运算参考教材高教版、浙大版概率论与数理统计作业布置课后习题大纲要求了解璇机献的概念了解样本空间的概念理解随机事件的关系和运箕数学基本内容一、基本概念:1、在一定条件下必然发生,称这类现象称为确定性现象.2、在这些娘中,结果都不止,并且事先无法预知会出现哪个结果,这类现敬被称为随机现象。3、随机骏在一次试验中呈现不确定的结果,而在大量m豆试验中结果呈现某
2、种规律性,例如相对b匕较稳定的性别比例,这种规律性称为统计规律性,4、为了研究随机现象的统计规律性,就要对客观事物进行观察,观察的过程叫试船.5、随机试蛤的一切可能结果组成的集合称为样本空间,记为=s,具中川表示试蛤的每一个可能结果,又称为样本点,即样本空间为全体样本点的集合.6、在一次试睑中可能出现,也可能不出现的一类结果称为随机事件。二、定理与性质1,随机试验的三个特点:(1)在相同的条件下试脸可以重复进行;(2)每次眯的结果不止一个,但是试验之前可以明确成吃的所有可能结果;(3)每次试睑将要发生什么样的结果是事先无法预知的.2、事件的定义解析(1)任一随机事件A是样本空间的一个子集.(2
3、)当成蛇的结果属于该子集时,就说事件A发生了.相反地,如果成吃结果不属于该子集,就说事件A没有发生.例如,如果掷殷子掷出了1,则事件A发生,如果掷出2,则事件A不发生。(3)仅含一个样本点的随机事件称为基本事件.(4)样本空间。也是自己的一个子集,所以它也称为一个事件.由于。包含所有可能试鸵结果,所以n在每一次试脸中一定发生,又称为必然事件.(5)空集6也是样本空间0的一个子集,所以它也称为一个事件。由于。中不包含任何元素,所以。在每一次试验中一定不发生,又称为不可能事件.3、随机事件间的关系(D如果4u8(或Bn/1),则称事件八被包含在B中(或称B包含A),见图1.1.从概率论的角度来说:
4、事件/1发生必导致事件B发生.(2)如果/1uB,BuA同时成立,则称事件/1与8相等,记为4=8。从概率论的角度来说:事件4发生必导致事件8发生,且8发生必导致4发生,即A与8是同一个事件.(3)如果A与B没有相同的样本点,则称事件4与B互不相容(血为互斥),见图1.2.从概率论的角度来说:事件A与事件8不可能同时发生.4、随机事件间的运苴(1)事件A与8的并,记为AU3,见图1.3,表示由事件4与8中所有样本点组成的新事件,从概率论的角度来说:事件八与8中至少有一个发生。(2)事件/1与3的交,记为/1C8(物13),见图1.4,表示由事件人与8中公共的样本点组成的新事件.从概率论的角度来
5、说:事件A与8同时发生.(3)事件/1与8的差,记为A-8,见图1.5,表示由在事件八中且不在事件8中的样本点组成的新事件.从概率论的角度来说:事件4发生而8不发生.(4)事件A的对立事件(或称为逆事件、余事件),记为4,见图1.6,表示由。中且不在事件A中的所有样本点组成的新事件,即4=。-A.从概率论的角度来说:事件A不发生.5、事件的运算性质定律:(1)5JS:AU8=BUA,ACiB=BnA;(2)结合律:(/1UB)UC=/1U(3UC),(AB)C=A(BC);政学基本指标教学课题第一章第二节概率的定义及其性质课的类型新知识课教学方法讲授、课堂提问、讨论、后发、自学教学手段黑扳多媒
6、体结合教学重点概率的性质教学难点公理化定义的理解参考敕材高教版、浙大版概率论与数理统计作业布置课后习踱大纲要求理解概率的公理化定义掌握概率的基本性质掌握加;抡式、减法公式的运用教学基本内容一、基本概念:1、概率的公理化定义设任一随机试脸E,。为相应的样本空间,若对任藏事件八,有实数P(Z1.)与之对应,目满足下面条件,则数PS)称为事件八的概率:(1)非负性公理对于任意事件A,总有p(4)O;(2)规范性公理P(C)=I;(3)可列可加性公理若小,必,Mn,为两两区不相容事件组,则有P(J八,=SP()二、定理与性质:性质1P(O)=O.性质2(有限可加14)设八1,小,Mn为两两互不相容的事
7、件,则有P(J儿)=1P(A1).性质3对任意事件4,有PM)=I-P(八).性质4若事件AU8,则P(8-4)=P(8)-P(4).推论若事件4UB,则P(4)P(B).性质5(诚法公式)设4,B为任意事件,则P(A-B)=P(八)-P(AR).性质6(加法公式)设4,B为任意事件,则P(AUB)=P(八)+P(B)-P(AR)t三、主要例Sg:例1(生日问题)n个人中至少有两个人的生日相同的概率是多少?例2已知事件4仇AU8的概率依次为0.2,0.4,0.5,求概率。(4幻.例3设事件48,C为三个随机事件,已知P(八)=0.2,P(B)=0.3,P(C)=0.4,P(AB)=0zP(BC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 教案
