模型43 几何中等分面积问题(解析版).docx
《模型43 几何中等分面积问题(解析版).docx》由会员分享,可在线阅读,更多相关《模型43 几何中等分面积问题(解析版).docx(32页珍藏版)》请在优知文库上搜索。
1、线段分三角形面枳问起.El当三角形具有公共TM点,并且底边共线时,三角册面积比等于底边边长比.则BD_mCD=ii-例题精讲【例1】.如图,八8C三边的中城八。,BE.(T的公共点为G,fl,AG:GD=2tI.若SAAeC=12,则图解:;八BC的三条中线4。、BE.CF交于点G.AGtGD2:1.:.AE=CE,-SCGE=SAGf=5ACfS/KiI=SBGD=StiCfSmv,-S.ca+S.BGr=4.故答案为:4A变式训练【变式1-1.如图,在八BC中,点。、E、F分别是8C、AD.Cf1的中点,且Sabc=8cJ,则SeBW的面积是()SAKDSCD-SAHC-石是AO的中点,:
2、.SABE=S.BDE-S.BlS.ECS(I)E-SAlX.F是EC的中点,1 SBSHCT-SHCt:-VS4C=8v112.SBCE=4nr.:SMF=2=;平行四边形。C8A.:.BC/OA.DB-OD.IX:DA.ZMCD=ZDN./CA)=乙DNR.GWDtVD.何理48Mf)9AONZ),2 .过D的任意H我都能把平行四边形的面枳分成面积相笄的两部分.过。作DFlxttTF,过8作BElX轴于E.平行四边形OCBA.B(17,6),C(5.6).:.DO-IiD.Db/BK.1.OF=EF,:.DF=3,0F=-17=8.5.2AD=!+钳:3=A8.5-22【例2.如图,在平面
3、直角坐标系AQY中,氏方形0A8C的顶点B的坐标为(6,4),直或F=-X+Z恰好符长方形OAHC分成面积相等的两部分,那么b=5.解:找y=+b恰好将长方形0A8C分成面积相等的两部分QtS.y=-.(+要经过矩形的中心;矩形的中心为(3.2,把点(3,2代入.y=-Mb,解得:b=5.“变式训练【变式27.如图,在菱形A8C。中,八8=6,N8=60,点在边八。上,HE=2.若百.线/经过点E,利该箜形的面积平分,并与菱形的另一边交于点立则线段FF的长为77_.解:如图,过点A和点E作AG1.6C_1.BC干点G和,,对矩形AGHE,:.GH-AE-2.;在菱形八8C。中,B=6.Zfl=
4、60,./.(;-3.53-H.,.HC=BC-BG-GH=6-3-2=1.,:EF平分菱形面积,FF经过菱形对角线交点,:.FC=AE=2.:.I-H=FC-HC-2-1=1.在Rl中.根据勾JS定理.得“EH2+FH2=27+127故答案为:27.【变式2-2.如图.AC的面积为1E分别为A8、AC的中点,广、G是8C边上的三等分点.那么ADEF的面枳是多少?/*足的面枳是多少?V。是A8的中点,DM/AQ.,Af是BQ的中点,.Vf=yt.二三角形ABC的面枳是=yflCAQ=l,:.BCXAQ=2.VD,E分别为A8、AC的中点,:.DE=-RC.2:.角形OF/的血枳为=%XM-/J
5、C-AQ=金:22224.CE=苧FG=孚.DE_3-,FG2工用形DOl.向m枳X=备【变式2-3.如图,在平面直角坐标系XQV中,多边形QA8(7:的及点坐标分别是O0.0),A0,6),H(4.6).C(4.4).D(6.4).E(6.0).若宜城/经过点M(2,3),且将多边形。UJa)E分割成面枳相等的两部分,求史线/的函数表达式.解:如图,Ji长8C交X轴干点R连接08.AF.DF.CE.。1和CE相交于点MVO0,0).B(4,6).C(4.4).D(6.4),E(6.0).二四边形OABF为矩形,四边形CoEF为矩形,;.点、M(2.3)是矩形OABF对用我的交点.即点M为矩形
6、AH尸。的中心,二出线/把矩形AHFO分成面积相等的两部分又;点U5.2)是矩形CM的中心,二过点N(S,2)的自.战把理形CDEF分成面枳相等的两部分.二ftMN即为所求的百.找1.,设直线/的解析式为y=k+4WJ2+ft=3.5kO=2,瀚得女二一.b-容.33因此所求直线,的函数表达式是:=-*y.实战演练1.如图.长方形八8C/)的面积为36eJ.,3G分别为A8.BC.CO的中点.,为AD上任一点.则图中阳影部分的面积为()SII=SABCl-S小EH-SaHFC-S匕HgD.24cm2=36-4E4M-FC-CG.222=36-)ME-FCtft.22=i11r.故选;A.2 .
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 模型43 几何中等分面积问题解析版 模型 43 几何 中等 面积 问题 解析