边缘计算与人工智能融合的新范式.docx
《边缘计算与人工智能融合的新范式.docx》由会员分享,可在线阅读,更多相关《边缘计算与人工智能融合的新范式.docx(18页珍藏版)》请在优知文库上搜索。
1、边缘计算与人工智能融合的新范式(边缘智能)摘要:边缘计算与人工智能这两种高速发展的新技术之间存在着彼此赋能的巨大潜力。通过3个研究案例,展示协同边缘计算和人工智能这两种技术如何促进各自的进一步发展。从边缘计算赋能人工智能的维度,针对深度学习模型在网络边缘侧的部署,提出了基于边端协同的深度学习按需加速框架,通过协同优化模型分割和模型精简策略,实现时延约束下的高精度模型推理。从人工智能赋能边缘计算的维度,针对边缘计算服务的放置问题,提出了基于在线学习的自适应边缘服务放置机制和基于因子图模型的预测性边缘服务迁移方法。关键词:边缘计算;人工智能;边缘智能;服务迁移1引言近年来,随着全球范围内社会经济与
2、科学技术的高速发展,信息通信技术(informationcommunicationstechnology,ICT)产业不断地涌现出了许多新兴技术。其中,有两种代表性技术被广泛认为对人类经济社会产生了巨大的推动力与深远的影响力。其一,作为人工智能领域代表性技术的深度学习,受益于算法、算力和数据集等方面的进步,近年来得到了突飞猛进的发展,并在无人驾驶、电子商务、智能家居和智慧金融等领域大展拳脚,深刻改变了人们的生活方式,提高了生产效率。而另外一种技术则为从传统的云计算技术演化发展而来的边缘计算技术,相比于云计算,边缘计算将强计算资源和高效服务下沉到网络边缘端,从而拥有更低的时延、更低的带宽占用、更
3、高的能效和更好的隐私保护性。然而,鲜为人知的是,人工智能和边缘计算这两种具有划时代意义的新技术目前正面临着各自进一步发展的瓶颈。一方面,对于深度学习技术而言,由于其需要进行高密度的计算,因此目前基于深度学习的智能算法通常运行于具有强大计算能力的云计算数据中心。考虑到当下移动终端设备的高度普及,如何将深度学习模型高效地部署在资源受限的终端设备,从而使智能更加贴近用户与物端,解决人工智能落地的“最后一公里”这一问题已经引起了学术界与工业界的高度关注。另一方面,对于边缘计算而言,随着计算资源与服务的下沉与分散化,边缘计算节点将被广泛部署于网络边缘的接入点(如蜂窝基站、网关、无线接入点等)。边缘计算节
4、点的高密度部署也给计算服务的部署带来了新的挑战:用户通常具有移动性,因此当用户在不同节点的覆盖范围间频繁移动时,计算服务是否应该随着用户的移动轨迹而迁移?显然,这是一个两难的问题,因为服务迁移虽然能够降低时延从而提升用户体验,但其会带来额外的成本开销(例如带宽占用和能源消耗)。幸运的是,人工智能和边缘计算各自面临的发展瓶颈可以通过它们二者之间的协同得到缓解。一方面,对于深度学习而言,运行深度学习应用的移动设备将部分模型推理任务卸载到邻近的边缘计算节点进行运算,从而协同终端设备与边缘服务器,整合二者的计算本地性与强计算能力的互补性优势。在这种方式下,由于大量计算在与移动设备邻近的具有较强算力的边
5、缘计算节点上执行,因此移动设备自身的资源与能源消耗以及任务推理的时延都能被显著降低,从而保证良好的用户体验。另一方面,针对边缘计算服务的动态迁移与放置问题,人工智能技术同样大有可为。具体而言,基于高维历史数据,人工智能技术可以自动抽取最优迁移决策与高维输入间的映射关系,从而当给定新的用户位置时,对应的机器学习模型即可迅速将其映射到最优迁移决策。此外,基于用户的历史轨迹数据,人工智能技术还可以高效地预测用户未来短期内的运动轨迹,从而实现预测性边缘服务迁移决策,进一步提升系统的服务性能。总体而言,边缘计算和人工智能彼此赋能,将催生“边缘智能”的崭新范式,从而产生大量创新研究机会。本文将简要介绍笔者
6、研究团队在融合边缘计算与人工智能两个方向上的初步探索。首先,从边缘计算赋能人工智能的维度出发,为了在网络边缘侧高效地运行深度学习应用,本文提出了一个基于边端协同的按需加速深度学习模型推理的优化框架一一Edgento为了实现降低模型推理时间,并按需保障模型精确率的双重目标,Edgent采取以下两种优化策略:深度学习模型分割,自适应地划分移动设备与边缘服务器之间的深度神经网络模型计算量,以便在较小的传输时延代价下将较多的计算卸载到边缘服务器,从而降低整体端到端时延;深度学习模型精简,通过在适当的深度神经网络的中间层提前退出,进一步减小计算时延。其次,从人工智能赋能边缘计算的维度出发,针对边缘计算服
7、务的动态迁移与放置问题,本文首先提出了一种用户自适应管理的在线服务放置机制。该机制能够通过在线学习(onlinelearning)人工智能技术自适应复杂的用户行为和多变的边缘网络环境,从而辅助用户做出高效的服务迁移决策。最后,本文还将展示如何使用因子图模型(factorg11phmodel)这一新兴人工智能技术实现用户位置预测,从而改善边缘服务动态迁移决策的质量。2边缘计算驱动实时深度学习作为人工智能领域的主流技术之一,深度学习近年来得到了学术界与产业界的大力追捧。由于深度学习模型需要进行大量的计算,因此基于深度学习的智能算法通常存在于具有强大计算能力的云计算数据中心。随着移动终端和物联网设备
8、的高速发展与普及,如何突破终端设备资源限制,从而将深度学习模型高效地运行在资源受限的终端设备这一问题已经引发了大量关注。为解决这一难题,可考虑边缘计算赋能人工智能的思路,利用边缘计算就近实时计算的特性,降低深度学习模型推理的时延与能耗。2.1 问题描述常见的深度学习模型(如深度卷积神经网络)是由多层神经网络相互叠加而成的.不同网络层的计算资源需求以及输出数据量都具有显著的差异性,那么一个直观的想法是将整个深度学习模型(即神经网络)切分成两部分,其中计算量大的一部分卸载到边缘端服务器进行计算,而计算量小的一部分则保留在终端设备进行本地计算。显然,终端设备与边缘服务器协同计算的方法能有效降低深度学
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 边缘 计算 人工智能 融合 范式