2023锂电池十年技术发展与展望.docx
《2023锂电池十年技术发展与展望.docx》由会员分享,可在线阅读,更多相关《2023锂电池十年技术发展与展望.docx(27页珍藏版)》请在优知文库上搜索。
1、锂电池十年技术发展与展望目录1氧化物固体电解质进展31.1NASICON型结构固体电解质31.2石榴石结构固体电解质41. 3钙钛矿结构固体电解质52硫化物固体电解质进展62. 11.i-P-S体系72.2 1.inf72.3 1.iPS5X(X=Cl,Br,I)体系83聚合物固体电解质进展94硼氢化物固体电解质115卤化物固体电解质145.1IIIB族金属卤化物电解质145.2IIIA族金属卤化物电解质155.3二/四价金属卤化物电解质166界面问题机理分析与改性策略167固态电池技术208结论与展望24作为清洁能源的代表,锂离子电池由于其高比能量/功率、环境友好以及使用寿命长等特点,成为最
2、具竞争力的电化学储能器件之一。目前,锂离子电池在便携式电子设备和电动汽车上已经得到广泛应用。久但是,基于氧化物正极与石墨负极的传统锂离子电池的能量密度越来越接近其理论上限,同时,由于采用有机液态电解液,锂离子电池在充放电过程中不可避免地发生副反应,以及电池循环过程中电解液挥发、泄漏等现象均会导致电池容量的不可逆衰减,影响锂离子电池的使用寿命。此外,由有机易燃电解液引起的安全问题,引发民众对锂离子电池安全性的疑虑白3尤其在一些关键行业,如航空航天、电动汽车、储能电网等领域,电池的安全性显得至关重要几采用固态电解质取代液态有机电解液的固态电池,有望同时解决传统锂离子电池面临的比能量、循环寿命以及安
3、全性等困境,符合未来大容量二次电池发展的方向,是电动汽车和规模化储能的理想电源。与传统液态锂离子电池相比,全固态锂电池具有如下优势:消除液态电解液泄漏和腐蚀的隐患,热稳定性更高;稳定且较宽的电化学窗口,可匹配高电压正极材料;固态电解质一般为单离子导体,副反应少,循环寿命更长;全固态锂离子电池可通过多层堆垛技术实现内部串联,获得更高的输出电压。因此,全固态锂电池被认为是锂电池的终极目标So作为固态锂电池核心组成部分一一固体电解质是实现固态锂电池高能量密度、高循环稳定性和高安全性能的关键皿咒固体电解质又称快离子导体,主要包括聚合物固体电解质和无机固体电解质两大类。其中无机固体电解质又包括:硫化物固
4、体电解质,氧化物固体电解质,硼氢化物固体电解质以及卤化物固体电解质等。无论采用何种固体电解质,由此带来的界面问题对于电池性能的影响都至关重要。在全固态锂电池中,电极与电解质之间的界面接触由固液面接触变为固固点接触,由于固相无润湿性,因此固固界面将形成更高的界面电阻。同时,固体电解质,尤其陶瓷电解质中有大量的晶界存在,且晶界电阻往往高于材料本体电阻,不利于锂离子在正负极之间传输。为了推进全固态锂电池的实用化,最近十年各国的科学家都做了大量工作,并取得了许多突破性进展。本文主要回顾了20122022年以来国内外在电解质材料、电极/电解质界面以及固态电池技术等方面的研究进展,并针对当前在固态电池研究
5、中面临的困难和挑战,总结了推进固态电池实用化过程中的常用策略,最后探讨了全固态锂电池可能的研究方向和发展趋势。并以此文祝贺储能科学与技术创刊十周年。1氧化物固体电解质进展辄化物固体电解质材料具有安全性能高、稳定性良好、成本低廉、环境友好等优点,是储能应用的研究热点。氧化物固体电解质主要包括NASICoN(sodiumsuperionicCOndIJCtoij型结构氧化物电解质、石榴石结构氧化物电解质和钙钛矿结构氧化物电解质。近十年来针对氧化物固体电解质,主要开展了其制备、改性、应用等方面的研究。1.1 NASICON型结构固体电解质NASleON型结构固体电解质的通式为1.iAO1J,其中A8
6、分别代表四价和五价骨架离子。NASICoN型结构固体电解质制备工艺简便,易于加工处理,对空气稳定,热稳定性和力学性能良好,是一类重要的氧,化物固体电解质材料。常见的NASICc)N型结构固体电解质根据化学组成可分为1.iZr2(PO4)3(1.ZP),1.iTi2(PO4)3(1.TP)和1.iGe2(PO4)3(1.GP)o其中,1.TP和1.GP的离子电导率明显高于1.ZP,为近年来主要研究的NASlCON型氧化物固体电解质体系同。为提高1.TP和1.GP固体电解质的离子电导率,最常用的手段是通过离子取代来调控离子传输通道。在1.TP和1.GP中,采用Sc、A1.丫、Ga等对Ti或Ge进行
7、部分取代,以及采用Si对P进行部分取代均可有效提高离子电导率。其中,A产取代被证明是最有效的手段。因此在1.TP和1.GP体系中,1.i13AI03Ti,JPOJ(1.ATP)和1.i15AI05Ge15(POJ(1.AGP)具有很高的离子电导率,两者电导率均可达到约10S/Cm量级,是当前最常见的研究体系。除了传统合成方法之外,Zhu等网提出了一种利用NASlCoN骨架结构制备高性能固态电解质的方法。研究者首先制备了NASICe)N结构的Na3Zr2Si2PC(NZSP)前驱体,然后通过锂钠离子交换获得了同样具有NASICe)N结构的1.i3Zr2Si2PQ2(1.ZSP)电解质。该方法的优
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 锂电池 十年 技术发展 展望
