《matlab遗传算法实例 .docx》由会员分享,可在线阅读,更多相关《matlab遗传算法实例 .docx(10页珍藏版)》请在优知文库上搜索。
1、matlab遗传算法实例%卜.面举例说明遗传算法%求下列函数的最大值%f(x)=10*sin(5x)+7*cos(4x)x0,10%将X的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)(210-1)0.01o%将变量域0,10离散化为二值域0,1023,x=0+10*b1023,其中b是0,1023中的一个二值数。%编程%2.1初始化(编码)%initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,Chromlength表示染色体的长度(二值数的长度),%长度大小取决于变量的二进制编码的长度(在本例中取10位)。%遗传算法子程序%
2、Name:initpop.m%初始化functionpop=initpop(popsize,Chromlength)pop=round(rand(popsize,Chromlength);%rand随机产生每个单元为0,1行数为popsize,列数为Chromlength的矩阵,%roud时矩阵的每个单元进行圆整。这样产生的初始种群。%2.2计算目标函数值%2.2.1将二进制数转化为卜进制数(1)%遗传算法子程序%Name:decodebinary,m%产生2n2(-1).1的行向量,然后求和,将二进制转化为十进制functionpop2=decodebinary(pop)p,py=size(
3、pop);%求POP行和列数fori=1:pypop1(:,i)=2.A(py-i).*pop(:,i);endpop2=sum(pop1,2);%求PoPl的每行之和%2.2.2将二进制编码转化为卜进制数(2)%decodechrom.m函数的功能是将奥色体(或二进制编码)转换为卜进制,参数spoint表示待解码的二进制串的起始位置%(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),%参数Iength表示所截取的长度(本例为10)。%遗传算法子程序%Name:decodechrom.m%将二进制编码转换成卜进制funct
4、ionpop2=decodechrom(pop,spoint,length)pop1=pop(:,spoint:spoint+length-1);pop2=decodebinary(pop1);%2.2.3计算目标函数值%calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。%遗传算法子程序%Name:calobjvalue.m%实现目标函数的计算functionobjvalue=calobjvalue(pop)tempi=decodechrom(pop,1,10);%将PoP每行转化成卜进制数x=temp1*10/1023;%将二值域中
5、的数转化为变量域的数objvalue=10*sin(5*x)+7*cos(4*x);%计算I-I标函数值%2.3计算个体的适应值%遗传算法子程序%Name:calfitvalue.m%计算个体的适应值functionIitvalue=CalfitvaIue(ObjvaIue)globalCmin;Cmin=O;p,py=size(objvalue);fori=1:pxifobjvalue(i)+Cmin0temp=Cmin+objvalue(i);elsetemp=0.0;endfitvalue(i)=temp;endfitvalue=fitvalue,;%2.4选择第制%选择或复制操作是决定
6、哪些个体可以进入卜.一代。程序中采用赌轮盘选择法选择,这种方法较易实现。%根据方程pi=fi0i=fifsum,选择步骤:%1)在第t代,由(1)式计算fsum和Pi%2)产生0,1的随机数rand(.),求s=rand(.)*fsum%3)求fis中最小的k,则第k个个体被选中%4)进行N次2)、3)操作,得到N个个体,成为第t=t+1代种群%遗传算法子程序%Name:selection.m%选择复制functionnewpop=selection(pop1fitvalue)totalfit=sum(fitvalue);%求适应值之和fitvalue=fitvaluetotalfit;%单个
7、个体被选择的概率fitvalue=cumsum(fitvalue);%0fitvalue=1234,则cumsum(fitvalue)=13610p,py=size(pop);ms=sort(rand(px,1);%从小到大排列fitin=1;newin=1;whilenewin=pxif(ms(newin)fitvalue(fitin)newpop(newin)=pop(fitin);newin=newin+1;elsefitin=fitin+1;endend%2.5交叉%交叉(CrOSSoVer),群体中的每个个体之间都以一定的概率PC交叉,即两个个体从各自字符串的某一位置%(一般是随机确
8、定)开始互相交换,这类似生物进化过程中的基因分裂与重组。例如,假设2个父代个体x1,x2为:%x1=0100110%x2=1010001%从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为:%y1=0100001%y2=1010110%这样2个子代个体就分别具有了2个父代个体的某些特征。利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。%事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。%遗传算法子程序%Name:crossover,m%交叉functionnewpop=crossover(pop1pc)px,py=size(pop);newpop=on
9、es(size(pop);fori=1:2:px-1if(randpc)cpoint=round(rand*py);newpop(i)=pop(i,1xpoint),pop(i+11cpoint+1:py);newpop(i+1,:)=pop(i+1,1xpoint),pop(i,cpoint+1:py);elsenewpop(i,:)=pop(i);newpop(i+1,:)=pop(i+1);endend%2.6变异%变异(mutation),基因的突变普遍存在于生物的进化过程中。变异是指父代中的每个个体的每一位都以概率pm翻转,即由T变为“0”,%或由0变为“1”。遗传算法的变异特性可以
10、使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。%遗传算法子程序%Name:mutation.m%变异functionnewpop=mutation(pop,pm)p,py=size(pop);newpop=ones(size(pop);fori=1:pxif(randpm)mpoint=round(rand*py);ifmpointbestfitbestindividual=pop(i,:);bestfit=fitvalue(i);endend%2.8主程序%遗传算法主程序%Name:genmainO5.mclearclfpopsize=20;%群体大小Chr
11、OmIength=I0;%字符串长度(个体长度)pc=0.6;%交叉概率Pm=O.001;%变异概率pop=initpop(popsize,Chromlength);%随机产生初始群体fori=1:20%20为迭代次数Objvaluej=CalobjvaIue(POp);%计算目标函数fitvalue=calfitvalue(objvalue);%计算群体中每个个体的适应度newpop=selection(pop,Iitvalue);%复制newpop=crossover(pop,pc);%交叉newpop=mutation(pop,pc);%变异bestindividual,bestfit=
12、best(pop,fitvalue);%求出群体中适应值最大的个体及其适应值y(i)=max(bestfit);n(i)=hpop5=bestindividual;x(i)=decodechrom(pop5,1,chromlength)*101023;pop=newpop;endfplot(,10*sin(5)+7*cos(4*x),010)holdonplot(x,y,r*)holdoffzindex=max(y);%计算最大值及其位置x5=x(index)%计算最大值对应的X值y=z【问题】求f(x)=x10*sin(5x)7*cos(4x)的最大值,其中0=x=9【分析】选择二进制编码,
13、种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08【程序清单】%编写目标函数function(sol,eval=fitness(sol,options)x=sol(1);eval=x10*sin(5*)7*cos(4*x);%把上述函数存储为fitness.m文件并放在工作目录下initPop=initializega(10,09MtneSS);%生成初始种群,大小为10xendPop,bPop,trace=ga(09,fitness,initPop,1e-611,maxGenTerm,25,normGeomSelect,.0.08,CarithXover,2,nonnifMutation,2253)%25次遗传迭代运算借过为:X=7.856224.8553(当X为7.8562时,f(X)取最大值24.8553)注:遗传算法一般用来取得近似最优解,而不是最优解。遗传算法实例2【问题】在一5=Xi=5,i=1,2区间内,求解f(1,2)=-20*exp(-0.2*sqrt(0.5*(1.