微专题2-1 导数在研究函数中的应用(四大核心考点)解析版.docx
《微专题2-1 导数在研究函数中的应用(四大核心考点)解析版.docx》由会员分享,可在线阅读,更多相关《微专题2-1 导数在研究函数中的应用(四大核心考点)解析版.docx(56页珍藏版)》请在优知文库上搜索。
1、做专题2-1导数在研究函数中的应用(四大核心考点)【考点目录】考点一:利用导数研究函数的最值和极值考点二,利用导数研究曲线上某点切线方程考点三:利用导数研究函数的单调性考点四:函数在某点取得极值的条件题型解密考点一:利用导数研究函数的最值和极值一.选择题(共1小题)1. (2022秋黄浦区校级月考)若/(X)在区间SM内有定义,且xg,b),则八Xo)=0”是乜是函数/(X)的极值点”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分条件也非必要条件【分析】根据极值的概念,导数的几何意义即可求解.【解答】解:由/(x0)=0不一定能得到%是函数/(X)的极值点,反例/(x)=3
2、,/,(O)=O,但X=O并不是/(x)的极值点,反过来:X0是函数/(x)的极值点也不一定能得到f,(x0)=0,反例/()=,x=0为f(x)的极小值点,但f(x0)不存在,./(%)=0”是是函数/(x)的极值点”的既非充分条件也非必要条件,故选:D.【点评】本题考查值的概念,导数的几何意义,属基础题.二.填空题(共10小题)2. (2023秋徐汇区校级期中)己知函数/(x)=-f+3+,若存在三个互不相等的实数小,p,使得/(m)=/()=/(P)=2024,则实数。的取值范围是_(2022,2026)【分析】由题意,对函数/(x)进行求导,利用导数求出函数的单调区间及极值,再根据题意
3、列出不等式,即可得解.【解答】解:已知/a)=-/+?+。,函数定义域为H,可得/(x)=-3/+3,当XCT时,,(x)0f/(x)单调递减;当TxO,/(x)单调递增:当xl时,(x)0,f(x)单调递减,所以当X=-I时,函数“X)取得极小值,极小值/(T)=-2,当X=I时,函数/(x)取得极大值,极大值/(1)=2+,若存在三个互不相等的实数小,p,使得/(M=()=/(p)=2024,此时22024解得2022vV2026,则实数。的取值范围为(2022,2026).故答案为:(2022,2026).【点评】本题考查利用导数研究函数的单调性和极值,考查了逻辑推理和运算能力.3. (
4、2022秋奉贤区期末)已知某商品的成本C和产量4满足关系C=50000+200夕,该商品的销售单价P和产量g满足关系式P=24200-1g2,则当产量。等于200时,利润最大.【分析】将利润表示出来,利用导数求出函数最值即可.【解答】解:每月生产g吨时的利润为/(夕)=(24200-(q2)q-(50000+200g)=-+2400(50000(0.0).由/(,)=-/+24000=0,解得夕=200或一200(舍去),在0,+8)内只有一个点q=200使f,(q)=0,.它就是最大值点,且最大值为/(200)=XZOO,+24000X20050000=3150000(元).每月生产200吨
5、产品时利润达到最大,最大利润为315万元.故答案为:200.【点评】本题考查导数的应用,属于基础题.4. (2023秋松江区校级期中)函数/(x)=2f-l的极值点为Q.【分析】求出函数的导数,通过导数为0,即可求解函数的极值点.【解答】解:Vf(x)=2x2-lfff(x)=4x0=x0./(x)在(-,0)上是减函数,在(0,+8)上是增函数,.当x=0时,函数取得极小值,无极大值.故答案为:0.【点评】本题考查了利用导数研究函数的极值点,属于中档题.5. (2023春徐汇区校级期末)已知X,y(0,+8),满足2x+y=2,则x+Jx+/的最小值为【分析】利用不,歹的关系将),换成关于X
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微专题2-1 导数在研究函数中的应用四大核心考点解析版 专题 导数 研究 函数 中的 应用 四大 核心 考点 解析