人教版选修21第二章双曲线双曲线的几何性质讲义.docx
《人教版选修21第二章双曲线双曲线的几何性质讲义.docx》由会员分享,可在线阅读,更多相关《人教版选修21第二章双曲线双曲线的几何性质讲义.docx(12页珍藏版)》请在优知文库上搜索。
1、案例二精析精练课堂合作探究重点难点突破知识点一双曲线的几何性质(1)范围、对称性/V2由标准方程-y-%7=l可得fq2,当N时,y才有实数值;对于y的任何值,X都有实数值。这说明从横的方向来看,直线X=X=之间没有图象,从纵的方向来看,随着X的增大,y的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线。双曲线不封闭,但仍称其对称中心为双曲线的中心。(2)顶点顶点:1(tz,),A2(0),特殊点:B(0,Z?),B2(0,b)0实轴:长为2。,。叫做半实轴长;虚轴:BB?长为2b)叫做虚半轴长。工22如右图所示,在双曲线方程F-J=I中,令y=0得x=,故它与X轴有两个
2、交点A1(一,0),abA2(,0),且X轴为双曲线一方=1的对称轴,所以4(一兄0)与4(O,0)其对称轴的交点,称为双曲线的顶点(一般而言,曲线的顶点均指与其犷?力,对称轴的交点),而对称轴上位于两顶点间的线段HA2叫做双曲线接一营=1的实T*轴长,它的长是为。/在方程YV2r2T=I中,令X=O,得y2=/,这个方程没有实数根,说明双曲线和yy轴没有交点。但y轴上的两ab个特殊点隹(0,一。),与(。,。),这两个点在双曲线中也有非常重要的作用把线段四层叫做双曲线的虚轴,它的长是北,要特别注意不要把虚轴与椭圆的短轴混淆。双曲线只有两个顶点,而椭圆那么有四个顶点,这是两者的又一差异。(3)
3、渐近线2y2如上图所示,过双曲线r2T=I的两顶点4,42,作y轴的平行线X=M,经过B,当作X轴的平行线aby=b,四条直线围成一个矩形,矩形的两条对角线所在直线方程是y=2(2=(),这两条直线就是双曲线的渐近线。要证明直线y=aab二j是双曲线一夕1的渐近线,即要证明随着X的增大,直线和曲线越来越靠拢接近,也即要证曲线上的点到直线的距离越来越短,因此把问题转化为计算IMq,但因IMQ不好直接求得,因此又把问题转化为求IMNI。显然MQ0时,焦点在X轴上;当lj2m2+3n2,0),3m2-5n2=2m2+3,.tn2=8112o又.双曲线渐近线为y=4gx,刎j3.,.代入机2=82,帆
4、=2,得y=q-,应选D。答案D规律总结求渐近线时应注意对渐近线的两种不同公式的应用。【变式训练2】假设点P在双曲线/一卷=1上,那么P到双曲线渐近线的距离的取值范围是O答案双曲线的一条渐近线方程是3x-y=0,由渐近线的性质知,当尸点是双曲线的一个顶点时,P到渐近线的距离最大,双曲线的顶点坐标是(1,0),.p到渐近线的距离最大值为里1=对l10故P到双曲线渐近线的距离的取值范围是(o,MQoI10J题型2由双曲线的几何性质确定其方程【例3】求与双曲线5一。=1有共同的渐近线,且经过点”(-3,2百)的双曲线的方程。解析双曲线且一上二1的渐近线方程是2=0,可设出双曲线的方程,将点M的916
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 选修 21 第二 双曲线 几何 性质 讲义