人工智能辅助诊疗发展现状与战略研究.docx
《人工智能辅助诊疗发展现状与战略研究.docx》由会员分享,可在线阅读,更多相关《人工智能辅助诊疗发展现状与战略研究.docx(10页珍藏版)》请在优知文库上搜索。
1、一、前言每年我国各类医疗机构诊疗总人次超过70亿次,且存在医疗资源分配不均、布局结构不合理等问题,医疗卫生行业面临巨大的服务需求压力。随着医疗信息化的快速发展,电子病历和健康档案的实行,产生了大量的文档、表格、图像、语音等多媒体信息。利用人工智能技术辅助开展医疗过程,对数据进行整合分析,为提升医疗卫生服务能力,解决医疗资源紧缺带来了新契机。2017年7月,国务院印发的新一代人工智能发展规划中提到,应深化人工智能在智能医疗领域的应用,推广应用人工智能诊疗新模式、新手段,建立快速精准的智能医疗体系。人工智能技术能够对大规模开放式医疗数据的语义进行分析、挖掘和理解,实现对医学语义网络和知识中心的自动
2、构建。通过对海量的医学文献、病例数据和诊疗方案进行快速检索,分析数据之间的隐含关系,能够开展辅助诊疗、药物研发等问题的研究,推动医疗技术的进步。通过对医学影像的智能分析,能够准确提取特征,定位病灶,为疾病预防与诊断提供帮助。此外,语音识别、视频理解、智能问答等技术能够在辅助病历记录、临床护理、康复指导、自动导诊等诸多领域展开应用。实现医疗信息和健康数据的融合、开放共享,并利用人工智能对碎片化医学信息进行整理分析,对医疗诊断过程提供辅助,可改善医疗健康服务,促进政府决策合理化,解决医疗卫生资源配置不均衡问题,是人工智能与医疗领域的最直接应用,也是医疗人工智能发展的重点。本文选取健康医疗信息人机交
3、互、数据智能中的语义理解与医学影像分析作为切入点,简要阐述了人工智能在辅助诊疗问题上的发展方向与现状,讨论了智能诊疗技术发展与应用的问题与挑战,为相关部门提供决策支持。二、医疗信息语义理解与影像分析发展现状目前,利用人工智能技术对疾病进行临床诊断的研究主要围绕两方面展开:一是对海量医学数据进行分析处理,通过推理、分析、对比、归纳、总结和论证,从大量数据中快速提取关键信息,对患者身体状态和患病情况得出认知结论;二是通过对文字、音频、图像、视频等多媒体形式的诊断数据进行分析与理解,挖掘和区分病情特征,进行诊断和评估。其中,医学信息的标准化表征和结构化整合是实现基于大数据智能手段进行辅助诊断的基础;
4、而医学影像数据作为一种能够准确、直观反映病情表征状态的重要诊断依据,加之深度学习技术在图像特征提取方面的突破性进展,成为当前人工智能与辅助诊断结合最紧密的领域之一。本节将从医疗信息语义理解与医学影像分析两方面的研究现状入手,对人工智能辅助诊疗的发展现状进行分析。(一)医学知识图谱与医学术语标准构建医疗健康信息化的推进积累了海量的医学数据。转化自然语言的原始数据表达方式,整合提炼不同来源的数据,形成标准化信息,建立结构统一的信息化医学档案,不仅方便对医学数据进行存储、整理和查找,也有利于与人工智能技术相结合。知识图谱作为一种应对互联网当中海量而零散信息的高效检索需求所设计的语义网络结构,对大规模
5、数据及数据实体之间的关系具有很强的表达和管理能力。通过对海量的医学概念、实体、关系及事实进行整合,能够有效表示实体间的语义关系。将医疗机构、医药产品、诊疗病例、健康监测数据、基因数据、健康饮食数据、运动数据等相关数据与图谱进行链接并在时间维度上进行延展,是构建个性化、动态、多模态、可语义理解并用于人工智能辅助决策的健康医疗信息的基础。基于知识图谱既能够进行高效的信息检索、查询,也能够基于已有信息进行推理,挖掘隐含知识,开展科普查询、辅助诊疗、临床决策、药物研发、智能导医等相关应用的研究,提高医生及医院的工作效率,提供针对分级诊疗的智能辅助。目前,通用知识图谱的应用己经十分广泛,如GoogIeK
6、nowIedgeGraphYagoDBpedia搜狗知立方等。大型知识图谱的构建是在融合在线百科全书等结构化、半结构化数据的基础上,利用实体抽取、实体链接、关系抽取、属性填充等技术,对不断产生的不同来源、不同格式的开放式非结构化信息进行抽取,并通过知识融合、知识验证实现对知识图谱的扩充和更新。作为知识图谱重要的垂直应用领域,医学知识图谱的发展也早已引起国内外的关注。医学知识图谱构建在对医学知识进行全面整理的基础上,对关键医学知识和基本概念进行严格定义,形成权威、准确的医学本体描述规范,方便对不同学科、不同专业和不同来源的数据进行融合与验证,形成语义网络,为临床数据标引、医疗信息存储、检索和聚合
7、提供便利。耶鲁大学通过整合神经科学知识库Sense1.ab,构建了包含从微观分子层面到宏观行为层面的脑科学知识图谱,帮助人类理解和表示神经科学领域海量信息之间的关联。由国际卫生术语标准制定组织(IHTSDe)维护的医学本体知识库SNOMEDCT,包含了超过31万个具有独立编号的医学相关的本体,以及超过136万个本体间的相关关系,广泛应用于电子病历、基因数据库、检验结果报告和计算机辅助医嘱录入等多个领域。由美国国立医学图书馆(N1.M)建设的一体化医学知识语言UM1.S,整合了100多部受控词表和分类体系,包含了超过100万个生物医学概念和超过500万个概念名称。UM1.S对不同词表在不同领域当
8、中的应用进行联通,具有跨语言、跨领域和工具化的特点,在信息检索、自然语言处理、电子病历和健康数据标准方面得到广泛应用。我国对临床术语的探索起步较晚,目前还未形成一套完整的、广泛应用的术语标准。中国中医科学院中医药信息研究所研制的中医药学语言系统包含超过12万个概念,60万个术语和127万个语义关系的大型语义网络,构建了中医药知识图谱。但该系统存在构建定位局限、内容不够完善等问题,尚未得到广泛应用。此外,国内医疗卫生领域的相关机构和个人发起成立了开放医疗与健康联盟(OMAHA),通过行业协作、开源开放的方式来实现健康信息技术的标准化。2017年5月,OMAHA启动了医学术语协作项目,致力于通过众
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能 辅助 诊疗 发展 现状 战略研究