特色题型专练01 尺规作图(解析版)(江苏专用).docx
《特色题型专练01 尺规作图(解析版)(江苏专用).docx》由会员分享,可在线阅读,更多相关《特色题型专练01 尺规作图(解析版)(江苏专用).docx(60页珍藏版)》请在优知文库上搜索。
1、中考特色题型专练之尺规作图几何篇题型一、与三角形结合1 .在学习等边三角形的过程中,小睿同学发现一个规律:在等边.A8C中,点。是AB边上任意一点,连接C。,过点A的射线AE交BC于点E,交CD于点F,当N8S=NACD时,则必有BD=CE.为验证此规律的正确性,小睿的思路是:先利用图,作/BAE=NACZ),再通过证全等得出结论.请根据小睿的思路完成以下作图与填空:D(1)用直尺和圆规在图的基础上作NBAE=NA8,AE交BC于点E,交8于点F.(不写作法,不下结论,只保留作图痕迹)(2)证明:qABC为等边三角形,AC=AB=SC,在Aa)和AE中,NCAB=NB,(),ZACo=NBAE
2、ACCBAE(ASA),/.,又,:AB=BC工AB-AD=,/.BD=CE.【答案】(1)见解析;(2)等边三角形的性质,AC=AB,AD=BE,BC-BE.【分析】本题考查了作图一基本作图,全等三角形的判定和性质,等边三角形的性质,熟练掌握全等三角形的性质是解题的关键.(1)根据题意作出图形即可;(2)根据等边三角形的性质和全等三角形的判定和性质定理即可得到结论.【详解】(1解:如图所示,-BAE即为所作的角;(2)证明:/8C为等边三角形,AC=AB=BC(等边三角形的性质),在AAef)和AE中,NCAB=NBAC=AB,ZACd=ZBAE:.ACEBAE(ASA),:AD=BE,又,
3、AB=BC,JAB-AD=BC-BE,:,BD=CEf故答案为:等边三角形的性质,AC=BfAD=BE,BC-BE.2 .如图,在RtZABC中,ZC=90o,ZA=30,.(1)用尺规作图作AB边上的中垂线DE,交AC于点Q,交A8于点E再连接8。(保留作图痕迹,不要求写作法和证明)在(1)题的基础上,求证:CD=DE【答案】(1)见解析(2)见解析【分析】此题主要考查了基本作图以及线段垂直平分线的性质和角平分线的性质,正确掌握线段垂直平分线的性质是解题关键.(I)直接利用线段垂直平分线的作法得出答案;(2)直接利用中垂线的性质结合角平分线的性质得出CD=D从ZCTA=90-30=60又OE
4、垂直平分48:AD=DB:.No班=ZA=30。:ZCBD=ZDBA=30qVZC=90o,DEAB:CD=DE3.如图,在二ABC中,AB=AC,点。在BC的延长线上,连接AO.(1)在线段40上确定点尸,使得NaT)=N8;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,如果AB=5,AD=8,求FA的长.【答案】(1)见解析25(2)AP=-O【分析】本题考查了作图一复杂作图,等腰三角形的性质,相似三角形的判定与性质,熟练掌握以上知识点并灵活运用是解此题的关键.(1)在AC右侧作NAcT=ND,CT交Ao于点尸,点P即为所求;(2)利用相似三角形的性质求解即可.【详解】
5、(1)解:如图,点P即为所求:由作图可得:ZACT=ZD,ZD+ZCPDZPCD=180o,ZACP+ZACB+ZPCD=180,.ZACB=ZCFfD,AB=AC,.ZACB=ZB,:.NC尸D=NB;(2)解:CAP=CAD,NACP=ND,.CAPDACf.ac.pADAC,AB=AC=5f4)=8,二Y4.(1)如图,已知RtZVlBC中,NAC8=90。,O是AB上一点.求作一。,使得OO过点A,且与BC相切.要求:用直尺和圆规作图;保留作图痕迹,写出必要的文字说明.(2)如图,在RtZA8C中,NAeB=90。,NCBA=30。,AC=1,。是边AB上一点(点0与点A不重合).若在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 特色题型专练01 尺规作图解析版江苏专用 特色 题型 01 作图 解析 江苏 专用