基于大数据的智能风险防控平台设计与实现.docx
《基于大数据的智能风险防控平台设计与实现.docx》由会员分享,可在线阅读,更多相关《基于大数据的智能风险防控平台设计与实现.docx(20页珍藏版)》请在优知文库上搜索。
1、前言近年来,受宏观经济下行压力加大、监管要求趋严、市场竞争加剧与犯罪形态升级等多重因素影响,防控金融风险的重要性日益凸显。商业银行作为金融中介机构,其经营本质是对风险的承担和管理。伴随着金融体系复杂程度的提高以及全球金融一体化进程的加快,商业银行的经营环境日益复杂,面临风险进一步加大;在新形势下,智能风险防控能力己成为商业银行获取竞争优势的关键。基于大数据、人工智能(AI)、生物识别等新技术培育大数据风险防控能力,加快智能风险防控平台的应用落地,已成为金融领域专家及学者研究的热点。陈稀结合大数据技术和Al技术,通过引入内置分析工具与监测模块,为商业银行审计部门设计并实现了以风险为导向的智能审计
2、系统。丁世博针对互联网企业在业务快速增长时所面临的业务安全问题,研究了基于面向服务的架构(SOA)框架的安全风险防控平台。张鲁男等以风险防控系统的架构、规则引擎和阈值体系的设计为基础,详细介绍了基于规则引擎并利用Al算法的实时业务风险防控系统。郭锐从大数据风险防控平台应用的概念特征及理论基础出发,论述了大数据风险防控平台对金融信贷发展的重要作用,并以某公司为案例,分析了大数据风险防控平台构建与运营发展过程中存在的问题并提出对策建议。目前多数风险防控应用系统是针对特定交易场景或业务需求进行逻辑处理的,并没有建立实时、动态、可更新、可扩展的风险防控体系。本文以智能风险防控平台的设计框架和实现方法为
3、研究对象,论述数字化转型背景下商业银行对智能风险防控平台的迫切需求;同时基于大量实践经验,从大数据智能平台的关键技术出发,提出一种高可用、高复用、易扩展、易伸缩的风险防控平台架构以及各功能模块的设计方法;以某金融机构部署的智能风险防控平台为例,从应用角度说明该方法的实际成效,据此对智能风险防控平台的应用发展提出建议。*、构建智能风险防控平台的需求分析(一)宏观需求分析1 .国际环境震荡多变,风险形势复杂严峻在世界经济陷入低迷、贸易摩擦不断升级、地缘政治持续紧张等诸多因素的影响下,我国经济转型发展阻力加剧。金融是经济的血脉,防范化解金融风险,促进经济健康高质量发展,是我国决胜全面建成小康社会、全
4、面建成社会主义现代化国家的必然要求。“十九大报告中把坚决打好防范化解重大风险列为三大攻坚战之首,其中防控金融风险是重中之重。十九届四中全会和中央经济工作会议提出,要打赢防范化解重大风险攻坚战,必须推进治理体系和治理能力现代化。2 .监管要求持续从紧,风险打击治理从严由于缺乏相应监管,支付行业经历一段时间的野蛮发展,造成支付市场乱象丛生,风险事件频频发生,网络赌博与电信诈骗风险尤为突出。针对该情况,中国人民银行及监管部门陆续出台了一系列规范与监管措施,严厉整顿支付市场乱象。2016年,中国人民银行发布261号文件,提出加强支付结算管理防范电信网络新型违法犯罪的有关事项;2019年的85号文件强调
5、需进一步加强支付结算管理,防范电信网络新型违法犯罪的发生;2020年的155号文件部署开展为跨境赌博、电信网络诈骗等违法违规活动提供支付结算服务的风险排查与整治工作。面对严监管常态化的政策环境,商业银行应严格落实监管政策要求,补齐风险防控短板,严防发生系统性风险。3 .业态变革不断加速,风险特征升级演变随着支付参与主体更加开放和多元,支付的内涵和外延发生全方位变革,新型支付方式不断推陈出新,扫码支付、手机闪付、无感支付等移动创新业务成为主流,在便利人们生活方式的同时,也对传统银行的风险防控能力提出挑战.犯罪团伙通过网络化渠道并借助程序多开、分身软件、短信嗅探等黑灰产工具对移动创新业务各环节实施
6、精准化攻击,风险防控压力向注册、开户、交易、转账等全链条渗透。商业银行应与时俱进,提前布局新型支付产品的风险防控体系,针对犯罪分子攻击新业务的手段和特征变化快的特点,升级风险防控技术能力,强化智能风险防控建设。(二)技术需求分析传统的风险防控体系以定性风险管理为主。然而,基于传统架构所设计和研发的风险防控系统已经不能满足业务快速发展的需要,突出表现在以下三方面。风险防控系统与业务系统的紧耦合导致重复建设和数据孤岛传统系统设计通常采用垂直应用架构,风险防控系统往往作为业务系统的一个子模块;在业务形态较为单一的早期,这种架构的问题并不突出,但随着业务创新的加快,这种架构将导致大量重复的功能建设。例
7、如,某商业银行重复建设信用卡风险防控系统、手机银行风险防控系统、在线支付风险防控系统等多套类似功能的系统,造成系统维护和升级的高昂成本;这样的架构也不利于数据沉淀,各个风险防控系统彼此难以打通,数据视角只能局限在其对接的业务场景中,而无法建立全局风险防控策略。单机存储与算力的限制导致风险防控特征计算范围的瓶颈。风险防控系统的核心是风险特征计算,即从卡片、商户、设备等不同维度计算一段时间窗口内的统计指标,从而刻画风险程度的高低,统计指标的时间窗口跨度、统计函数的复杂度直接决定了风险防控能力的强弱。然而,传统的以AIX/DB2为代表的小型机架构一般只能通过增加单机的中央处理器(CPU)、内存、磁盘
8、等方式提高处理能力,代价高昂;随着数字互联时代的到来,在大规模高并发的交易行为处理方面显得力不从心。规则模型迭代周期长导致无法应对层出不穷的新欺诈。当前的犯罪形态已经从个体化和作坊式向集团化、专业化、智能化和国际化转变,加之猫池、伪基站、自动化脚本、流量劫持等网络黑灰产已形成一个庞大的产业链,进一步降低了犯罪成本。然而,传统风险防控系统仍然大量依赖“事后分析的专家规则,规则参数与模型变量迭代周期长,无法满足“事前甄别、事中干预的新需求。此外,受制于底层的数据治理和模型训练环境,单纯依靠机器学习算法并不能解决所有的风险防控难题。三、基于大数据的智能风险防控平台关键技术构建一个能够有效支撑大数据应
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 数据 智能 风险 平台 设计 实现