电磁场与电磁波复习.docx
《电磁场与电磁波复习.docx》由会员分享,可在线阅读,更多相关《电磁场与电磁波复习.docx(9页珍藏版)》请在优知文库上搜索。
1、电磁场与电磁波复习四川理工学院第一局部知识点归纳第一章矢分析1、三种常用的坐标系(1)直角坐标系_TTf_dSx=dydz_微分线元:dR=axdx+aydy+a.dz面积元:ds=fidz,体积元:dr=dxdydzdS.=dxdydlr=dr长度元:,dl0=rddl=rsind(2)柱坐标系dlr=drdSr=dldl.=rddz氏度元:,dl=rd,面积元dS=dlrdl.=drdz,体积元:d=rdrddzdlz=dzdSz=dldlz=rdrdz(3)球坐标系dSr=dldl=r2sindcldS=dlrdl0=rdrd面积元:dS0=dlrdl=rsndrd,体积元:d=r2si
2、ndrdd2、三种坐标系的坐标变量之间的关系(1)直角坐标系与柱坐标系的关系(2)直角坐标系与球坐标系的关系(3)柱坐标系与球坐标系的关系3、梯度(1)直角坐标系中:(2)柱坐标系中:球坐标系中:4.散度(1)直角坐标系中:(2)柱坐标系中:球坐标系中:意义为:任意矢量场A的散度在场中任意体积内的体5、高斯散度定理:AJS=Ad=divAd,积分等于矢量场A在限定该体积的闭合面上的通量。6,旋度(1) 直角坐标系中:(2) 柱坐标系中:(3) 球坐标系中:两个要性质:矢一场旋度的做度恒为零,VVxA=O标场梯度的旋度恒为零,VxV;/=07、斯托克斯公式:第二章静电场和恒定电场1、静电场是由空
3、间静止电荷产生的一种发散场。描述静电场的根本变量是电场强度E、电位移矢量。和电位夕。电场强度与电位的关系为:E=708.85410,2Fw2、电场分布有点电荷分布、体电荷分布、面电荷分布和线电荷分布。其电场强度和电位的计算公式如下:(1)点电荷分布(2)体电荷分布面电荷分布(4) 线电荷分布3、介质中和真空中静电场的根本方程分别为在线性、各向同性介质中,木构方程为:D=0E+P=E=0rE4、电介质的极化(1)极化介质体积内的极化体电荷密度为:/极化强度矢量)。(2)介质外表的极化面电荷密度为:QPS=A;日为表面的单位法向樗矢量)5、在均匀介质中,电位满足的微分方程为泊松方程和拉普拉斯方程,
4、时n6、介质分界面上的边界条件71(1)分界面上。“的边界条件D1,$(PS为分界面上的自由电荷面密度),当分界面上没有J.y孚!自由电荷时,那么有:二匚hOM=O2即=6=,它给出了B的法向分量在D2n介质分界面两侧的关系:/%(I)如果介质分界面上无自由电荷,那么分界面两侧B的法向分翱!内;的边界条件(II)如果介质分界面上分布电荷密度PS,。的法向分量从介质1跨过分界面进入介质2时将有一增量,这个增量等于分界面上的面电荷密度P,。用电位表示噤+/管F神普=叠3=。)(2)分界面上B的边界条件(切向分量)TTTTnE=nE或Elr=后1,立场强发的初向4堑A不间的台界面上总是推住的。由于电
5、场的切向分量在分界面上总连续,法向分量有限,故在分界面上的电位函数连续,即应用欧姆定律可得:2弱“二%七2和九二右。巧?此外,恒定电场的焦耳损耗功率密度为P=配。储能密度为牝=g田2。第四章恒定磁场1、磁号的特性由磁感应强度3和磁场强度方来描述,真空中磁感应强度的计算公式为:(真空磁导率:1.0=4107h,)TT(1)线电流:1=4“叼=也产X(I)4%力R24乃13TTTT?(2)面电流:4二A)IJSxaKdS二MTJSX(1.)4-411R2-4乃Xl3r-rTT7体电流:Z=O,Jxafld二MO,Jx(r)”4九R2T3r-r2、恒定磁场的根本方程(1)真空中恒定磁场的根本方程为:
6、A、磁通连续性方程:.积分形式:fBdS=,b、真空中安培环路定理:积分形式C4d/=/微分形式:Vfi=O微分形式:VB=0J(2)磁介质中恒定磁场的根本方程为:A、磁通连续性方程仍然满足:积分形式:tdS=,微分形式:VB=OB、磁介质中安培环路定理:J积分形式,I=/微分形式:VxH=JTc、磁性媒质的木构方程:1=04方=方山=-此其中看为磁化强度矢量)。桎定蹴扬是一种族涡扬,因此一般系修用一个标春而照的柳盛未描述。3、磁介质的磁化磁介质在磁场中被磁化,其结果是磁介质内部出现净磁矩或宏观磁化电流。磁介质的磁化程度用磁化强度以表示。(1)磁介质中的束缚体电流密度为:Jlll=VxMi(2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电磁场 电磁波 复习