第42讲空间向量及其运算和空间位置关系(讲)(教师版).docx
《第42讲空间向量及其运算和空间位置关系(讲)(教师版).docx》由会员分享,可在线阅读,更多相关《第42讲空间向量及其运算和空间位置关系(讲)(教师版).docx(15页珍藏版)》请在优知文库上搜索。
1、第42讲空间向量及其运算和空间位置关系(讲)思维导图题型1:空间向量的线性运算空间向量及其运算和空间位置关系题型2:共线、共面向量定理的应用题型3:空间向量数量积的应用题型4:利用空间向量证明平行或垂直知识梳理1.空间向量及其有关概念概念语言描述共线向量(平行向量)表示空间向量的有向线段所在的直线互相平行或重合共面向量平行于同一个平面的向量共线向量定理对空间任意两个向量a,b(bO),存在2R,使a=b共面向量定理若两个向量a,b不共线,则向量P与向量a,b共面=存在唯一的有序实数对(x,y),使p=xa,b空间向量基本定理及推论定理:如果三个向量a,b,C不共面,那么对空间任一向量p,存在唯
2、一的有序实数组x,y,z使得P=Xa+yb+zc.推论:设O,A,B,。是不共面的四点,则对平面A8C内任一点P都存在唯一的三个有序实数4,y,z,使正=xH+.y正+z灰*且x+y+z=12.数量积及坐标运算(1)两个空间向量的数量积:ab=aIbcosa,b);ab=ab=0(a,b为非零向量);设a=(x,yfz),则aF=a2,a=-x2+y2z2.(2)空间向量的坐标运算:a=(m,。2,。3),b=(b,如)向量和a+b=(+b,班+岳,03+b3)向量差a-b=(a-b,但一历,a3b3)数量积ab=ab+4282+3b3共线a/b=a=bta2=b2a3=by(R,力0)垂直a
3、bt7a2b2+3b3=O夹角公式/I,。1仇+。22+43-C0S3,迎+质+赤+强+易3.直线的方向向量与平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线I平行或共线,则称此向量a为直线/的方向向量.(2)平面的法向量:直线LL,取直线/的方向向量a,则向量a叫做平面的法向量.(3)方向向量和法向量均不为零向量且不唯.4.空间位置关系的向量表示位置关系向量表示直线1,2的方向向量分别为ni,112/i7Z2n/n2n1=kn2(kwR)Zi/2nn2=n1n2=O直线I的方向向量为n,平面a的法向量为mlanmnm=0LLannn=hn(R)平面,少的法向量分别
4、为n,manmn=hn(ZR)a邛II-Lm=IIm=O题型归纳题型1空间向量的线性运算【例1-1】(2019秋龙岩期末)如图所示,在平行六面体ABCD-A旦GR中,AB=a,AD=b,AA=c,M是DQ的中点,点N是AG上的点,且AN=gAC,用,b,c表示向量MN的结果是()2-D.幻二一5105336,E是CC的中点=A. x = l, y = 2 , z = 3C. x = l, y = 2t z = 2D.【分析】根据M是。的中点,4V=gAG即可得出MN=-DDy-AD+ACl=-A41一AQ+g(A1+AQ+AB),然后进行向量的数乘运算即可.【解答】解:M是以。的中点,AN=A
5、C,.MN=MD+DA+AN=-DDl-AD+-ACl=-AAy-AD+-(AAl+AD+AB)=-AB-AD-AA1232333612l1=-a-bc.336故选:D.【例1-2】(2019秋湘西州期末)如图已知正方体ABCD-HBCD中B.1=Z3【分析】设正方体棱长为i,建立空间直角坐标系,写出向量的坐标,根据条件得4I=By解得X,y,z1 1=-x2 2【解答】解:正方体ABCr-A8CZ,棱长为1,以。为原点,以AA,DC,。分别为X,y,Z轴建立空间直角坐标系,所以a=L(O,0,1)=(0,0,-),j=-(0,1,0)=(0,-,0),c=-(-l,0,0)=(-0,0),卬
6、222233AE=(TI,3,2因为AE=m+yb+zc,所以(-11)X(O0,)+y(0,0)z(-00)111=z3=解得x=l,y=2rz=3,11122故选:A.【跟踪训练1-1】(2019秋咸阳期末)已知空间四边形OABC中,OA=,OB=OC=C,点M在线段OA上,且。W=3M4,点N为BC的中点,则MN=()a12.1d32.1r,11.1n31AlA.ab+-cB.-a+-bcC.-a+-bcD.a+-b+-c232432222422【分析】根据题意画出图形,结合图形,利用空间向状的线性运算法则,用04,OB,OC表示出MN即可.【解答】解:如图空间四边形OABC中。A=,O
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 42 空间 向量 及其 运算 位置 关系 教师版