04三角形中的导角模型-高分线模型、双(三)垂直模型(教师版).docx
《04三角形中的导角模型-高分线模型、双(三)垂直模型(教师版).docx》由会员分享,可在线阅读,更多相关《04三角形中的导角模型-高分线模型、双(三)垂直模型(教师版).docx(29页珍藏版)》请在优知文库上搜索。
1、专题04三角形中的导角模型高分线模型、双(三)垂直模型近年来各地考试中常出现一些几何导角模型,该模型主要涉及高线、角平分线及角度的计算(内角和定理、外角定理等)。熟悉这些模型可以快速得到角的关系,求出所需的角。本专题高分线模型、双垂直模型、子母型双垂直模型(射影定理模型)进行梳理及对应试题分析,方便掌握。模型1:高分线模型条件:AZ)是高,AE是角平分线例1.(2023秋浙江八年级专题练习)如图,在二ABC中,NA=30。,/8=503Co为/ACB的平分线,CE上AB于点、E,则NECD度数为()【答案】C【分析】依据直角三角形,即可得到NBCE=40。,再根据NA=30。,8平分/AC8,
2、即可得到NBCz)的度数,再根据NDCE=N38-NBCE进行计算即可.【详解】解:=50o,CElABf.ZBCE=40,X.ZA=30。,Co平分ZACB,,NBCD=gZBCA=(180o-50-30)=50,.NDCE=ZBS-ZBCE=50。-40。=10。,故选:C.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是1800是解答此题的关键.例2.(2023春河南南阳七年级统考期末)如图,在AABC中,01=02,G为A。的中点,BG的延长线交AC于点石,尸为AB上的一点,。尸与AD垂直,交AO于点”,则下面判断正确的有()2BDC4。是BE的角平分线;BE是AABO的边AD
3、上的中线;C”是AACO的边A。上的高;4”是ZkAb的角平分线和高A. 1个B. 2个C. 3个D. 4个【答案】B【详解】解:根据三角形的角平分线的概念,知AG是AABE的角平分线,故此说法错误;根据三角形的中线的概念,知BG是AABO的边AO上的中线,故此说法错误;根据三角形的高的概念,知CH为AACD的边上的高,故此说法正确;根据三角形的角平分线和高的概念,知A”是AACF的角平分线和高线,故此说法正确.故选:B.【点睛】本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解
4、题的关键.例3.(2023安徽合肥七年级统考期末)如图,已知A。、AE分别是RtZkABC的高和中线,AB=9cmtAC=12ctm,BC=IScm,试求:(I)A。的长度;(2)AACE和aABE的周长的差.BDEC【答案】(1)A。的长度为与cm;(2)ZXACE和AABE的周长的差是3tw.【分析】(1)利用直角三角形的面积法来求线段AD的长度;(2)由于AE是中线,那么BE=CE,再表示SIACE的周长和mABE的周长,化简可得OACE的周长-0ABE的周长=AC-AB即可.【详解】解:(1)国BAC=90,AD是边BC上的高,Sacb=ABAC=BCAD,AB-AC91236z、m田
5、“心上360AB=9cm,AC=12cm,BC=15cm,SAD=(cm),即AD的长度为一cm;CB1555(2)(3AE为BC边上的中线,0BE=CE,回团ACE的周长-0ABE的周长=AC+AE+CE-(AB+BE+AE)=AC-AB=12-9=3(cm),即0ACE和团ABE的周长的差是3cm.【点睹】此题主要考查了三角形的面积,关键是掌握直角三角形的面积求法.例4.(2023广东东莞八年级校考阶段练习)如图,在JWC中,AD,AE分别是二45C的高和角平分线,若/8=30。,NC=50o.(1)求NTME的度数.(2)试写出ZzME与NC-NB关系式,并证明.(3)如图,F为AE的延
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 04 三角形 中的 模型 高分 垂直 教师版