第16章二次根式化简的方法、关键、技巧讲义.docx
《第16章二次根式化简的方法、关键、技巧讲义.docx》由会员分享,可在线阅读,更多相关《第16章二次根式化简的方法、关键、技巧讲义.docx(6页珍藏版)》请在优知文库上搜索。
1、第16章二次根式化简的方法、关键、技巧1、被开放数是小数的二次根式化简例1、化简L5分析:被开放数是小数时,常把小数化成相应的分数,后进行求解。解:评注:化简时通常分子、分母同时乘以分数的分母,使分母上数或者式子成为完全平方数或者完全平方式。2、被开放数是分数的二次根式化简例2、化简卷分析:因为,125=5x5x5=52x5,所以,只需分子、分母同乘以5就可以了。5解:5525评注:化简时,通常分子、分母同时乘以分数分母的一个恰当因数或因式,使分母上数或者式子成为完全平方数或者完全平方式。3、被开放数是非完全平方数的二次根式化简例3、化简M分析:因为,48=163=423,所以,根据公式而=笈
2、孤(a0,b0),就可以把积的是完全平方数或平方式的部分从二次根号下开出来,从而实现化简的目的。解:V48=J16x3=V16XV3=V4XV3=4-3。评注:将被开放数进行因数分解,是化简的基础。4、被开放数是多项式的二次根式化简例4、化简J(X+y/分析:当指数是奇数时,保持底数不变,设法把指数化成是一个偶数和一个奇数的积。解:J(+y/=J(X+y)2(+y)=J(X+yXJX+y=(+y)J+y。评注:当多项式从二次根号中开出来的时候,一定要注意添加括号。否则,就失去意义。5、被开放数是隐含条件的二次根式化简例5、化简a的结果是:A) y/a B) C) -yaD) -J-a分析:含字
3、母的化简,通常要知道字母的符号。而字母的符号又常借被开方数的非负性而隐藏。因此,化简时要从被开方数入手。-y-a=-a故选(C)。I-aI-a化简二次根式的关键二次根式77的化简是二次根式的重要内容之一,也是中考命题的热点,在中考中通常是以填空题或选择题的形式出现的.化简77的主要依据是公式7=Ial,因此,化简二次根式的关键是确定a的正负性,由此确定把根号内的因式移到根号外后是否需要变号?下面就a的正负性如何确定举例说明.一、直接根据给出的字母的取值范围进行确定例1已知aVO,化简:ya2b=.分析:因为aV0,所以从而/滞卜=_屁.点评:当被开方数为多个因式的积时,通常是寻找平方因式,运用
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 16 二次 根式 方法 关键 技巧 讲义