最优化方法习题一.docx
《最优化方法习题一.docx》由会员分享,可在线阅读,更多相关《最优化方法习题一.docx(10页珍藏版)》请在优知文库上搜索。
1、习题一一、考虑二次函数f(x)=j+2尢乂+3Jd-JG+%I)2)3)4)5)写出它的矩阵一向量形式:f()=x + 7r矩阵Q是不是奇异的?证明:f()是正定的f()是凸的吗?写出f(x)在点嚏=(2,1)处的支撑超平面(即切平面)方程解:1)f(x)=X:+2为项+3$+刘XiVX2)X)X2,2)3)4)其中X=因为Q二Xl因为20,因为V?/()=,Q二2、6;,所以IQI=,b二r-J=80即可知Q是非奇异的=80,所以Q是正定的,故f(x)是正定的r22、36,所以IV2=8o,故推出/(X)是正定的,即V2/S)是凸的5)因为Vf()=(2+22-l,2+6z+l),所以v()
2、=(5,i)所以f(x)在点处的切线方程为5(%-2)+11(H-1)=0求以下函数的梯度问题和HeSSe矩阵Df(X)=2汨+X1X2+913+32+23+222)f(x)=ln(+%2+X2)解:1)W(x)=(4+2+9,+62+3+2,91+2)三、设欧)=%: + + 2%; + 2%工3一X2一%3,取点3 = (1,1,1),验证,)=(10.1)是歆)在点丁)处的一个下降方向,并计算af( X+t d)证明:vf(x)= (2 ,3%9+2%3-1,4工3+2%2- 1)dVf(X1)=(1A-I) 4= -3O1.Lmin(1)“)所以f(+tJ)=3*0.25-3*0.5+
3、4=3.25四、设O,,b,G(JT2”n)考虑问题Minf()=lsttj=iajxj=b1)写出其KUhnTUker条件1122)证明问题最优值是g为0q)11解:1)因XJ(J=I,.4)为目标函数的分母故Xj。所以;U=I,n)都为O所以KuhnTuker条件为V*(x)+/Js7h(x)=O2xlG2X2C2X - - -得 XylnajCj =b =1所以最优解是%、CA五、使用KuhnTuker条件,求问题minf(x)=(x-D+(冗2-2)尤2-XI=IstXi+X2=2Xl,工2N0的KUhnTUkel点,并验证此点为问题的最优解解:x=(1/2,3/2)0故/=O那么W)
4、+2h2=0即位口+4力+4;卜。而V2=3故f72(x)x=8O即其为最优解六、在习题五的条件下证明X*4HB)L(X4*,)其中L(x,2,)=f(x)+(2-X1-1)+Mx1+X2-2)证明:L(X,4)=f()+;l(j-W-l)+4(W+j-2)=f(=f(*)+4*(X;-%;T)+(/;+%;-2)=/*,)=f(b(x)=f(x)+4(%2-T)+4(XI+%2-2)=L(X,7,4)习题二一、设f(x)为定义在区间a,b上的实值函数,X*是问题Ininf(x)axb的最优解。证明:f(x)是a,b上的单谷函数的充要条件是对任意,Hem,句,H满足f(+(1)2)max,()
5、,f(X,),4(OJ)证明:不妨设为H,那么MX+(l-)%2VX2“必要性”假设;IXl+(1-)H那么由单谷函数定义知/(+(1-)2)/(1)故有/U1+0-)2)f(1)那么12不+(1一2X=且f(4%+(l-4)%2)f(E)=01)证明:满足条件奴JG=Fa),(为)=八温,%)=八启的二次函数。S)是(严格)凸函数2)证明:由二次插值所得f(x)的近似极小值点(即O(X)的驻点)是或者9证明:1)设火R)=QX+Zr+C(6Z0)那么,(x)=2ax+b1吸X)=2a2+b=r()得=八乂)-八猊Gb=八加一卬八工2)-尸(.)2(刘一X),%一XJ = /(X2)一%2(/
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优化 方法 习题