核磁共振技术.docx
《核磁共振技术.docx》由会员分享,可在线阅读,更多相关《核磁共振技术.docx(4页珍藏版)》请在优知文库上搜索。
1、核磁共振技术周瑞I(1.吉林大学仪器科学与电气工程学院,吉林省长春130000)摘要:核磁共振是指原子核在外加恒力磁场作用下产生能级分裂,从而对特定的电磁波发生共振吸收的现象通过。因而测定和分析受测物质对电磁波的吸收情况就可以判定它含有哪种原子,以及原子之间的距离多大,并据此分析出它的三维结构。核磁共振技术nuclearmagneticresonance,NMR开展至今已经六十多年了,在材料科学,化学,医疗,石油化工等领域已经有了广泛的应用,许多科学家因研究NMR而获得诺贝尔奖。关键词:核磁共振技术;NMR波谱;原理;应用中图分类号:0571.25+1文献标识码:Anuclearmagneti
2、cresonanceZhourui1(1、Jilinuniversitycollegeofinstrumentation&electricalengineeringJilinprovinceChangchun130000)AbstractLNuclearmagneticresonanceisreferstothenucleiintheexternalenergylevelsplittingconstantforceproducedundertheactionofmagneticfield,thustheelectromagneticwavetohappeninaparticularresona
3、nceabsorptionphenomenon.Thusthedeterminationandanalysisofthetestsubstancebyabsorptionofelectromagneticwavewillbeabletodeterminewhatkindofatomsitcontains,andthedistancebetweenatomsmuch,andanalysingitsthree-dimensionalstructure.Thetechnologyofnuclearmagneticresonance(nuclearmagneticresonanceNMR,)andno
4、whasmorethan60years,inmaterialsscience,medical,chemical,petrochemicalandotherfieldshasbeenwidelyused,manyscientiststoobtainNobelprizeforresearchonNMR.Keywords:nuclearmagneticresonance;NMRspectrum;principle:applicationOv引言:从19世纪40年代中期,美国哈佛大学珀塞尔和斯坦福大学布洛赫等人发现核磁共振现象以来,核磁共振技术飞速开展。目前,核磁共振已广泛地应用到物理、化学、生物特别
5、是医学等各个领域。它是研究核结构和准确测量磁场的重要方法之一。化学家利用核磁共振技术解析分子结构即核磁共振的波谱分析。医学上制成核磁共振成像仪,为临床诊断和生理学、医学研究提供重要数据。核磁共振还用在地质勘探上,核磁共振探测是MRI技术在地质勘探领域的延伸,通过对地层中水分布信息的探测,可以确定某地层下是否有地下水存在,地下水位的高度、含水层的含水量和孔隙率等地层结构信息。1、核磁共振的物理原理核磁共振是原子核在外磁场中,能级之间共振跃迁的现象。原子核带正电并有自旋运动,其自旋运动必将产生磁矩,称为核磁矩。核磁矩口与原子核的自旋角动量S成正比,即A=S,式中了为比例系数,称为原子核的旋磁比。在
6、外磁场中,原子核自旋角动量的空间取向是量子化的,它在外磁场方向上的投影值为:I=mh0,加为核自旋量子数。依据核磁矩与自旋角动量的关系,核磁矩在外磁场中的取向也是量子化的,它在磁场方向上的投影值为:从=mh,对于不同的核,机分别取整数或半整数。在外磁场中,具有磁矩的原子核具有相应的能量,其数值可表示为:E=B=mhb式中8为磁感应强度。可见,原子核在外磁场中的能量也是量子化的。由于磁矩和磁场的相互作用,自旋能量分裂成一系列分立的能级,相邻的两个能级之差为:卜E=yhB.用频率适当的电磁辐射照射原子核,如果电磁辐射光子能量恰好为两相邻核能级之差那么原子核就会吸收这个光子,发生核磁共振的频率条件是
7、:力Vz=yhB=yhB/2兀或(t)=2v=B,式中/为频率,G为圆频率。对于确定的核,旋磁比/可被精确地测定。可见,通过测定核磁共振时辐射场的频率y,就能确定磁感应强度;反之,假设磁感应强度,即可确定核的共振频率。2、核磁共振的开展历史1930年代,物理学家伊西多拉比发现在磁场中的原子核会沿磁场方向呈正向或反向有序平行排列,由图1所示,而施加无线电波之后,原子核的自旋方向发生翻转。这是人类关于原子核与磁场以及外加射频场相互作用的最早认识。由于这项研究,拉比于1944年获得了诺贝尔物理学奖。图1磁场中的原子核沿磁场方向排列1946年两位美国科学家布洛赫和珀塞尔发现,将具有奇数个核子(包括质子
8、和中子)的原子核置于磁场中,再施加以特定频率的射频场,就会发生原子核吸收射频场能量的现象,这就是人们最初对核磁共振现象的认识,为此他们两人获得了1950年度诺贝尔物理学奖,由图2所示。1966年,ErnSt创造脉冲傅立叶变换核磁共振技术,促进了13C、15N、29Si核磁及固体核磁的开展。图2布洛赫和珀塞尔3、核磁共振技术的应用3.1核磁共振技术的分支核磁共振技术主要有两个学科分支:核磁共振波谱和磁共振成像。核磁共振波谱技术是基于化学位移理论开展起来的,主要用于测定物质的化学成分和分子结构。磁共振成像技术诞生于1973年,它是一种无损测量技术,可以用于获取多种物质的内部结构图象。由于核磁共振可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 核磁共振 技术