限时训练24:第二章圆锥曲线解答题专项每日一练(限时20分钟).docx
《限时训练24:第二章圆锥曲线解答题专项每日一练(限时20分钟).docx》由会员分享,可在线阅读,更多相关《限时训练24:第二章圆锥曲线解答题专项每日一练(限时20分钟).docx(15页珍藏版)》请在优知文库上搜索。
1、限时训练24:第二章圆锥曲线解答题专项每日一练(限时20分钟)(把意念沉潜得下,何理不可得,把志气奋发得起,何事不可做。)1 .如图,直线卜=葭与抛物线交于AI两点,线段A3的垂直平分线与直线y=-5交于。点.2o(1)求点。的坐标;(2)当户为抛物线上位于线段A3下方(含AB)的动点时,求AOPQ面积的最大值.2 .如图,椭圆m;=l(bO)的离心率为近,直线x=a和=。所围成的矩形ABCD的面积为8.aiZr2(I )求椭圆M的标准方程;(II)设直线/:y=X+,(帆WR)与椭圆M有两个不同的交点尸,QJ与矩形ABCD有两个不同的交点S,r.求闸ISTl的最大值及取得最大值时m的值.限时
2、训练25:第二章圆锥曲线解答题专项每日一练(限时20分钟)(立志是事业的大门,工作是登门入室的旅程。)221.设椭圆二+q=l(a60)的左、右焦点分别为不亮,A是椭圆上的一点,AF2FiF2,原点。到直线的距erZr离吗M(I)证明=Jb;(II)设2,Q为椭圆上的两个动点,OQlIOQ2f过原点O作直线。卫2的垂线OQ,垂足为O,求点。的轨迹方程.2.如图,RE分别是椭圆C:ft0)的左、右焦点,d是椭圆C的顶点,S是直线NE与椭圆C的另一个交点,_石.尼=60。.(I)求椭圆C的离心率;(II)已知/月8的面积为4oj,求,b的值.限时训练26:第二章圆锥曲线解答题专项每日一练(限时20
3、分钟)(有志始知蓬莱近,无为总觉咫尺远。)=4的焦点在X轴上(I )若椭圆E的焦距为I,求椭圆E的方程;(II)设,E分别是椭圆的左、右焦点,尸为椭圆E上第一象限内的点,直线三尸交J轴与点。,并且弓尸一6,证明:当。变化时,点尸在某定直线上.2.在平面直角坐标系XQy中,尸是抛物线U=20,(pO)的焦点,M是抛物线C上位于第一象限内的任意一点,3过M,E。三点的圆的圆心为Q,点。到抛物线C的准线的距离为4.(I)求抛物线C的方程;(II)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由;(In)若点”的横坐标为&,直线/:y=+;与抛物线C有两个不同
4、的交点A8,/与圆。有两个不同的交点D,E,求当gA2时,A卸2+|。目的最小值限时训练27:第二章圆锥曲线解答题专项每日一练(限时20分钟)(虽长不满七尺,而心雄万丈。)1 .已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2.0)为其右焦点.(I)求椭圆C的方程;(三)是否存在平行于OA的直线L,使得直线L与椭圆C有公共点,且直线OA与L的距离等于4?若存在,求出直线L的方程;若不存在,说明理由.2 .如图,直线Ly=Kb与抛物线C:/=4),相切于点A.(1)求实数人的值;(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.参考答案:1. (1)(5,-5);(2)最大值30
5、【分析】(1)把直线方程抛物线方程联立求得交点A,8的坐标,则AB中点M的坐标可得,利用48的斜率推断出48垂直平分线的斜率,进而求得48垂直平分线的方程,把),二5代入求得Q的坐标.(2)设出/的坐标,利用?到直线OQ的距离求得三角形的高,利用两点间的距离公式求得。的长,最后利用三角形面积公式表示出三角形。PQ,利用X的范围和二次函数的单调性求得三角形面积的最大值.1【详解】解:(1)解方程组;得IC或Iy=l-4U=U=48即A(-4,-2),B(8,4),从而AB的中点为M(2,1).由KAB=g,直线AB的垂直平分线方程y-=-2(x-2)令yf得x=5,Q(5l5)(2)直线OQ的方
6、程为x+y=0,设P点P到直线OQ的距离d=2FPQ=T囤d*f+8x-32卜TP为抛物线上位于线段AB下方的点,且P不在直线OQ上,/.4r434或4J45x2+8nx+4n2-4=0,y=x+m,设尸(为,凹),。(工2,%),贝U%+x2=-n,x,x24z74,由A=64机220(472-4)0得_石m6.心叫产竽C当/过A点时,7=1,当/过。点时,机=-l当-4m一1时,有S(TW-1,-1),T(2,2+?),IST=2(3+2,PQ4I5-m2446阿7=时尸7其中r=w+3,由此知当,=,即f=1,/=一c(一百,一1)时,袅取得最大值由对称性,可知若1根6,则当m二:时,喀
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 限时 训练 24 第二 圆锥曲线 解答 专项 每日 20 分钟