学习单元23营销信息系统与调研.docx
《学习单元23营销信息系统与调研.docx》由会员分享,可在线阅读,更多相关《学习单元23营销信息系统与调研.docx(13页珍藏版)》请在优知文库上搜索。
1、点云处理相关技术调研2021初步1引言3D点云与2D图像不同,它包含了更加丰富的坐标信息,也相对于2D图像隐藏了更多空间结构信息与更丰富的语义信息,处理点云数据并获得其隐含的各种信息便显得尤为重要,在计算机技术高速发展的现代,随着计算手段的增加和计算效率的大幅提高,处理海量点云数据也变的更加现实,各种点云特征提取算法与点云关键点检测算法也得到了高速发展。本文档对其中的部分经典技术进行了调研与汇总,便于各位同学交流学习。本文档目前阶段主要分为三个部分,第一部分主要针对点云几何特征提取算法进行相关调研,第二部分针对点云关键点检测算法进行调研,第三部分对点云去噪相关算法进行调研。2点云几何特征提取点
2、云中包含着丰富的几何信息,几何特征提取的目标就是要识别并检测点云中局部邻域中的几何结构,通过将邻域中的几何结构信息编码为表示为向量的特征空间中的点,借助式2.3所描述的几何特征相似假设,进而可以通过分析特征空间中的近邻点来获取对应关系的集合。几何特征提取是点对配准中最为关键也是最为复杂的内容,因为特征的好坏直接关系到特征匹配的结果,进而影响刚性配准的结果。一个好的几何特征必须对离群值、噪声、异常点和点云密度的变化鲁棒,并且需要具备较高的特征辨识度。在点云上提取几何特征的方法可以区分为深度学习方法和传统人工编码的方法,由于深度学习的飞速发展,基于深度学习的几何特征提取算法已经大幅优于传统的人工编
3、码的方法。本小节重点介绍基于深度学习的几何特征提取算法。点云是一种描述空间点的位置、颜色等信息的数据结构,相比于图像这种规则的二维数据结构,点云具有无序性、稀疏性、信息不完整性和无组织性等特点。为了能够在点云上提取高辨识度的几何特征,上述点云的四个特点是主要要解决的问题。在本小节中,首先详细介绍点云的四个特性,然后再对具体的解决方窠进行介绍。1 .无序性与二维的图像中的像素矩阵不同,点云是一组没有特定顺序和排列的点的集合。具体来说,点云通常的表示形式是一个NX3的矩阵,N表示点云中点的个数,矩阵的每一行是点的三维坐标。无序性的具体表现在于,交换矩阵任意两行,此点云是不变的。由于使用不同传感器或
4、从不同角度对同一物体进行扫描得到的点云其点与点之间的顺序是变化的,并且一个包含个点的点云模型,可能有!个不同顺序的排列。因此无序的点云对深度学习的影响较大,可能导致网络过拟合,影响网络训练的效果。现阶段应对点云无效性的方法主要是通过数据增强的方法去训练网络,即在网络训练的每一个epoch中对点云数据进行随机地重排列。通过这种方式可以有效防止因为点云的无序性导致的网络过拟合的问题。2 .稀疏性由于传感器的限制,三维扫描设备获取的点云通常只位于物体的表面,并且物体的形状对获取的点云也有影响。例如,激光雷达在近处扫描得到的点云较为密集,而在远处的点云较为稀疏。对于RGBD相机KineC3场景中包含一
5、些黑色的物体可能会导致扫描的点云中包含一些空洞。通常来说,点云越密集,那么对于物体表面的描述更为精准。点云越稀疏,效果相反,这会显著影响几何特征的辨识度,并且由于两者在局部区域中包含的点数不同,这可能导致求取的几何特征显著不同。对于点云的稀疏性,通常可以使用体素化降采样来解决,但是虽然体素化降采样可以调整密度,但是也会降低点云的分辨力,造成几何特征的辨识力下降的问题。3 .信息不完整性点云是一组三维空间点坐标构成的离散点集。由于本质上是对三维世界中物体几何形状进行低分辨率重采样,因此点云数据提供的几何信息是不完整的;另外,点云数据采集时由于遮挡等原因,无法获取目标物体完整的三维描述。点云的信息
6、不完整性对几何特征提取提出了更高的要求。4 .无组织性点云中包含丰富的几何拓扑信息,但是点云是无组织结构的数据。类似二维图像,可以通过像素矩阵的形式对逐点进行组织,点云也可以表示为一个NX3的矩阵,但是这样的组织方式过于简单,不利于网络学习点云的几何拓扑结构,因此需要一些更利于表现点云几何信息的数据结构来组织点云。体素是一种常用的组织结构,体素是一个单位的立方体包围盒,通过体素化可以将点云分别用小的立方体包围起来,得到多个立方体。通过体素化,可以方便地使用深度神经网络模型进行特征提取。但是这种方法由于内存限制,只能使用比较小分辨率的体素网格,并且体素包围盒的边缘部分的点云拓扑结构被破坏,造成信
7、息的丢失。上述点云数据的特性导致了在处理点云数据时不能像传统二维图像上应用卷据操作一样。为了能够挖掘点云中丰富的几何拓扑信息,提取更为丰富的几何特征,近几年研究人员进行了深入的研究和探索,本文将现有方法大致分为了两种:基于局部块的方法、基于点云的方法。基于局部块的方法指的是通过体素、包围球、最近邻等方法将空间中距离较近的点组织到一起得局部块的方法。基于点云的方法是直接将点云作为输入通过网络的自学习来捕获点云中的局部几何结构的方法。下面对这三类方法中的一些经典的方法进行介绍。2.1 快速点直方图FPFH是一种几何特征描述符,考虑局部范围内所有点之间的位置影响和法线关系,描述局部范围内数据的几何特
8、征,具有位置信息不变性的特点。FPFH是点特征直方图(PointFeatureHistograms,PFH)的扩展,主要在计算效率方面进行了较大改进,但是依然保留了PFH大部分的特性,计算复杂度为0(nk)快速点特征直方图的计算过程如下:首先确定中心点P与邻域点之间的法线偏差。法线偏差可以用法线之间的角度值进行表示,该步骤的结果为简化的点特征直方图(SimplifiedPointFeatureHistogram,SPFH)。然后,根据相同的方法,查找中心点所有邻域点的邻域范围,计算每个邻域点邻域范围内的SPFH,则中心点P的FPFH的计算方式:FPFH(P)=SPFH(P)+:,SPFH(Pk
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 学习 单元 23 营销 信息系统 调研