新人教版 七年级下学期全册教案(下).docx
《新人教版 七年级下学期全册教案(下).docx》由会员分享,可在线阅读,更多相关《新人教版 七年级下学期全册教案(下).docx(60页珍藏版)》请在优知文库上搜索。
1、7.3.2多边形的内角和教案教学任务分析教学目标知识目标了解多边形的内角和与外角和公式,进一步了解转化的数学思想能力目标1、让学生经历猜想、探索、推理、归纳等过程,发展学生的合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。2、通过把多边形转化为三角形,体会转化思想在几何中的运用,让学生体会从特殊到般的认识问题的方法,3、通过探索多边形的内角和与外角和,让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。情感情感通过学生间交流、探索,进一步激发学生的学习热情,求知欲望,养成良好的数学思维品质。重点探索多边形的内角和及外角和公式难点如何把多边形转化成三角形,
2、用分割多边形法推导多边形的内角和与外角和。教学流程安排活动流程活动内容和目的活动1回顾三角形内角和,引入课题回顾三角形内角和知识,激发学生的学习兴趣,为后继问题解决作铺垫。活动2探索四边形内角和鼓励学生寻找多种分割形式,深入领会转化的本质一将四边形转化为三角形问题来解决。活动3探索五边形内角和,推导出任意多边形内角和公式通过类比得出方法,探索多边形内角和公式,体会数形间的联系,感受从特殊到般的思考问题的方法。活动4探索六边形及n边形外角和通过类比和扩展方法的使用,使学生掌握复杂问题化为简单问题,化未知为已知的思想方法。活动5多边形内角和与外角和公式的运用综合运用所学知识去解决问题。活动6归纳总
3、结,布置作业小结及课后探究习题梳理所学知识,达到巩固,发展提高的目的。教学过程设计问题与情况师生行为设计意图活动1问题:你知道三角形的内角和是多少度吗?ABC三角形的内角和等于180课题:多边形的内角和与外角和1、教师提问,学生思考作答。2、教师总结:三角形的内角和等于180。3、引出课题:您想知道任意一个多边形的内角和吗?今天我们就来进一步探讨多边形的内角和与外角和。回顾已学知识:三角形的内角和等于180,为后继问题的解决作铺垫。利用学生的好奇心设疑,激发学生的求知欲望,使他们能自觉地参与到下面多边形内角和探索的活动中去。活动2问题:你知道任意一个四边形的内角和是多少吗?学生展示探究成果1.
4、BC分成2个三角形180o2=360BC分割成4个三角形180oX4-360=360ABPC分割成3个三角形180o3-180o=3601、引导学生猜想:四边形的内角和等于360。2、学生分小组交流与探究,进一步来论证自己的猜想。3、由各小组成员汇报探索的思路与方法,讲明理由。4、教师汇总学生所探索出的不同方法,除测量与拼凑法外,并提出疑问:你们添加辅助线的目的是什么?说一说你的想法。5、教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形,利用三角形内角和求得四边形内角和。教师可点拨学生从正方形、长方形这两个特殊的多边形的内角和,进而猜测出四边形的内角和等于360oo“解放学生的手
5、,解放学生的大脑”,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的语言表达能力与推理能力。鼓励学生寻找多种分割形式,深入领会转化的本质一一将四边形转化为三角形问题来解决。活动3问题1:你知道五边形的内角和是多少度吗?A.ECAECC问题2:你知道n边形的内角和吗?(n-2)180180on-360o180o(n-l)-180o板书:多边形内角和公式:(n-2)180例:求15边形内角和的度数1、教师提出问题,学生思考后分组活动:2、教师深入小组,参与小组活动,及时了解学生探索的情况。3、让学生归纳借助辅助线将五边形分割成三角形的不同分法。4、探究五边形的边数与所分割
6、的三角形个数间的关系,进而得出五边形内角和与边数的关系。5、根据以上分割三角形的方法,引导学生归纳n边形内角和公式及不同公式间的联系,指明为了书写整齐,便于记忆,我们选择(n-2)-180这个公式。6、通过计算让学生巩固并掌握n边形内角和公式。通过增加图形的复杂性,让学生再一次经历转化的过程,加深对转化思想方法的理解,在探索过程中进一步体现新课标“以人为本”的思想,再一次发展学生的平理能力和语言表达能力。通过四边形、五边形特殊,多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法。活动4问题1:小明家有一张六边形的地毯
7、,小明绕各顶点走了一圈,回到起点A,他的身体旋转了多少度?例:六边形外角和等于多少度?O问题2:n边形外角和等于多少度?n边形外角和等于3601、学生思考作答,教师作适当点拨。通过课件演示,由学生发现:六边形的外角和等于360o2、教师引导学生利用多边形的内角和公式,进一步论证六边形外角和等于360。即:六个平角减去六边形内角和等于六边形外角和3603、进行类比推理并小结:n边形外角和等于n个平角减去n边形内角和,与边数无关。180on-(n-2)180=360经历现实情况引出六边形的外角和等于360,从学生已有的生活经验出发,更能激发学生的学习兴趣。通过类比和扩展方法的使用,使学生掌握复杂问
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人教版 七年级下学期全册教案下 新人 年级 下学 期全册 教案