最新数据治理体系实施步骤.docx
《最新数据治理体系实施步骤.docx》由会员分享,可在线阅读,更多相关《最新数据治理体系实施步骤.docx(19页珍藏版)》请在优知文库上搜索。
1、引言:完整的企业或机构大数据能力的构建步骤一般是“建立组织架构一应用需求梳理一数据盘点梳理一引进平台技术一汇聚多源数据治理数据一数据应用-数据运营”等。数据资产管理以数据价值为导向,分布在大数据能力构建的多个环节。本章将主要围绕数据资产管理,具体阐述实施步骤、主要工具平台的功能,并基于实践经验,提出数据资产管理成功的要素。数据成熟度不同的企业或单位开展数据资产管理的具体步骤和实施内容要根据自身情况制定。(一)实施步骤数据资产管理可参考按照“统筹规划一管理实施一稽核检查一资产运营”四个阶段的方法策略执行,每个阶段对应的管理职能如图7所示。以业务应用目标为指引,企业可以按照自身数据及管理情况制定不
2、同的实施步骤顺序。数据资产管理实施步骤1 .第一阶段:统筹规划第一阶段是统筹规划过程,制定数据资产管理战略规划,明确数据资产管理目标,涉及建立数据资产管理组织和制度作为保障措施,盘点数据资产,制定数据资产标准规范等,该阶段成果是后续工作的基础。一般情况下,第一步是建立组织责任体系,根据自身情况,制定数据资产管理制度规范。需要建立一套独立完整的关于数据资产管理的组织机构,明确各级角色和职责,确定兼职专职人员,保障数据资产管理的各项管理办法、工作流程的实施,推进工作的有序开展,并逐步打造管理及技术的专业人才团队。第一步的主要交付物包括:数据资产管理规划、数据资产管理认责机制、数据资产管理工作指引、
3、数据资产管理考核评价办法。第二步是结合业务盘点数据资产,评估当前数据管理能力。对基础数据的盘点是开展数据资产管理工作的前提之一,需要分析企业战略及业务现状,结合当前大数据现状及未来发展,盘点企业内外部数据现状,确立数据资产管理的目标,并逐渐实施需求调研、盘点资产、采集汇聚等专题任务。与此同时,了解企业数据来源、数据采集手段和硬件设备情况,以定位自身数据资产管理能力,规划未来数据资产管理成熟度提升方案。第二步的主要交付物包括:数据资产盘点清单、数据资产管理现状评估。第三步是制定数据资产相关的标准规范。在企业组织架构、制度体系和数据资产盘点的基础上,结合国际标准和行业标准,围绕数据资产全生命周期管
4、理,制定相关的数据规范体系,包括元数据标准、核心业务指标数据标准、业务系统数据模型标准、主数据标准、关键业务稽核规则等,使得数据管理人员在工作中有明确的规则可依,同时,建立参考数据和主数据标准、元数据标准(比如元模型标准)、公共代码标准、编码标准等基础类数据标准,以及基础指标标准、计算指标标准等指标类数据标准和关键业务稽核规则。企业应逐步推动相关数据规范和标准的工作建设,使数据有效汇聚和应用,切实保障数据资产管理的流畅实现。第三步的主要交付物包括:数据资产标准管理办法。2 .第二阶段:管理实施如果说第一阶段重点还在于对数据资产的定义、规划、梳理,第二阶段就是对第一阶段成果的落地实施C首先,在搭
5、建大数据管理平台、完成数据汇聚工作的基础上,根据企业自身存量数据基础和增量数据预估,建设或采购必要的数据资产管理平台或引入第三方工具以支撑管理工作,切实建立起企业据资产管理能力。其次,要建立安全管理体系,防范数据安全隐患,执行数据安全管理职能。再次,还需要制定和管理主数据,以明确企业核心业务实体的数据如客户、合作伙伴、员工、产品、物料单、账户等,从而自动、准确、及时地分发和分析整个企业中的数据,并对数据进行验证。在第二阶段里,需要从数据资产管理的相关业务、技术部门日常工作流程入手,切实建立起企业数据资产管控能力,包括从业务角度梳理企业数据质量规则,检测数据标准实施情况,保证数据标准规范在企业信
6、息系统生产环境中真正得到执行。针对关键性数据资产管理工作,可以借助管理工具,建立数据资产的管理流程,保证相关事情都有专人负责。同时,企业应加强数据资产服务和应用的创新,可以围绕降低数据使用难度、扩大数据覆盖范围、增加数据供给能力等几个方面开展。通过数据可视化、搜索式分析、数据产品化等降低数据使用难度;通过数据“平民化”(如打造数据应用商店)扩大数据覆盖范围,让一线业务人员接触到更多的数据,让数据分布更加均衡;通过数据消费者、数据生产者之间灵活的角色转变,增加数据的供给能力(如形成数据众筹众享模式)。第二阶段的工作目标主要是为企业打造核心的管理数据资产的能力,同时为企业内数据资产管理部门形成数据
7、管理的工作环境,概括起来,就是企业数据资产可管理、可落地。本阶段主要交付物包括:数据资产管理办法、数据资产管理实施细则(包括数据标准管理、数据质量管理、元数据管理、主数据管理、数据安全管理、数据应用管理等)。3 .第三阶段:稽核检查稽核检查阶段是保障数据资产管理实施阶段涉及各管理职能有效落地执行的重要一环。这个阶段包括检生命周期等具体任务。这个阶段需要抓好三个“常态化”。一是数据标准执行情况检查的常态化。数据标准管理是企业数据资产管理的基础性工作,通过数据标准管理的实施,企业可实现对大数据平台全网数据的统一运营管理。数据标准管理的检查主要从标准制定和标准执行两个方面检查。标准制定的检查主要围绕
8、同国家标准、行业标准的一致性,同时参考与本地标准、数据模型的结合性,包括数据命名规范、数据类别等。标准执行的检查主要围绕标准的落地情况,包括数据标准的创建和更改流程的便捷性、数据标准使用的广泛性、数据标准与主数据的动态一致性等。二是数据质量稽核的常态化。应对数据质量问题,首先要提升数据质量意识,数据质量意识包括能够将数据质量问题与其可能产的业务影响联系起来,同时也包括“数据质量问题不能仅仅依靠技术手段解决”的理念。尽可能从数据源头提升数据质量。其次,建立一套良性循环、动态更新的数据质量管理流程,制定符合业务目标的数据质量稽核规则,明确在数据全生命周期管理各环节的数据质量提升关键点,持续评估和监
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 数据 治理 体系 实施 步骤